Abstract:
A rotor assembly includes a housing and a hub. The housing has an open end and an opposed closed end, and is formed with a raised portion in the central location of the closed end. The hub is mounted on the closed end of the housing and covers the housing except for the raised portion to construct a thin motor.
Abstract:
A fan housing assembly includes a mounting base formed with a through hole thereon and a bushing. The bushing has a sleeve and is coupled to the mounting base by connecting the sleeve to the through hole. The mounting base and the bushing can be separately formed with predetermined materials in view of the different quality requirements before being assembled, thus resulting in lower manufacturing cost and enhanced flexibility in the fan design.
Abstract:
An axial flow serial fan includes a single frame, a first rotor vane having at least one first blades; and a second rotor vane having at least one second blades, wherein the first rotor vane and the second rotor vane are provided in series in the single frame along an axial direction to minimize space occupied by the axial-flow serial fan in the axial direction.
Abstract:
A fan frame for encircling an impeller of a fan that includes a base and a plurality of teeth. A hole is formed on the base to form an inner periphery. The plurality of teeth is substantially perpendicular to, and mounted around the inner periphery for encircling the impeller of the fan. A plurality of clearances is formed between each one of the plurality of teeth and its adjacent tooth.
Abstract:
The invention provides an anti-fracture fan structure including a hub, a plurality of blades, and a plurality of ribs. The hub has an inner surface formed inside and encircling it. The plurality of blades are arranged outside and around the hub. The plurality of ribs projects from the inner surface of the hub into the inside of the hub. Each of the plurality of ribs is not perpendicular to the inner surface of the hub. Furthermore, the anti-fracture fan further includes a shielding-can situated inside the hub and in contact with the plurality of ribs. Moreover, the hub can be formed of a plastic material and the shielding-can can be formed of a metal material. The ribs can be easily warped when the shielding-can expands.
Abstract:
An engagement structure of a fan, which is engaged with a heat dissipation plate having a plurality of heat dissipation fins. A plurality of lower engagement portions with inverted-L-shapes is formed on the plurality of heat dissipation fins. A plurality of clearances substantially parallel to the plurality of heat dissipation fins is formed on each of the lower engagement portions. The engagement structure includes a fan frame and a plurality of upper engagement portions with L-shapes. The plurality of upper engagement portions is elastically mounted around the fan frame. Each of the upper engagement portions includes an L-shaped portion. A plurality of ribs is formed on the L-shaped portions. When assembling the engagement structure with the heat dissipation plate, the L-shaped portions are engaged with the lower engagement portions with inverted-L-shapes for mounting in a vertical direction, while the plurality of ribs are engaged with the plurality of clearances for mounting in a horizontal direction.
Abstract:
An overvoltage protective device for DC motor is disclosed. The device includes a voltage-dividing circuit and a control unit, and is electrically connected to a DC motor in parallel. The voltage-dividing circuit has one end thereof electrically connected to an input voltage of the DC motor, and the other end thereof grounded. The control unit is electrically connected to a part of the voltage-dividing circuit for accessing a voltage level thereof and thereby driving the DC motor.
Abstract:
A fan motor speed control circuit includes a driving circuit, a voltage division circuit, and a speed modulator. The voltage division circuit has a first transistor and a plurality of resistors and is connected between a voltage source and the driving circuit. The speed modulator has a second transistor and a plurality of parallel resistors and is connected between the voltage division circuit and the driving circuit. The current of the fan motor speed control circuit flows through a first path under a first input voltage generated from the voltage source and through a second path under a second input voltage larger than the first one; the parallel resistors are in the second path such that the current value passing through the driving circuit varies according to the resulting resistance value of the parallel resistors.
Abstract:
A fan motor speed control circuit includes a driving circuit, a voltage division circuit, and a speed modulator. The voltage division circuit has a first transistor and a plurality of resistors and is connected between a voltage source and the driving circuit. The speed modulator has a second transistor and a plurality of parallel resistors and is connected between the voltage division circuit and the driving circuit. The current of the fan motor speed control circuit flows through a first path under a first input voltage generated from the voltage source and through a second path under a second input voltage larger than the first one; the parallel resistors are in the second path such that the current value passing through the driving circuit varies according to the resulting resistance value of the parallel resistors.
Abstract:
A PWM buffer circuit includes a duty cycle converting circuit and a frequency-fixed PWM signal generating circuit. The duty cycle converting circuit is used for receiving a first PWM signal and then generating a duty cycle reference voltage on the basis of the first PWM signal. The duty cycle reference voltage is a one-to-one mapping function of the first duty cycle. The frequency-fixed PWM signal generating circuit is used for receiving the duty cycle reference voltage and then outputting a second PWM signal with a fixed frequency. The second PWM signal has a second duty cycle, which is determined in accordance with the duty cycle reference voltage. In addition, the second duty cycle is a one-to-one mapping function of the duty cycle reference voltage.