Abstract:
An optical scanning device includes a light source, a deflector, and a plurality of scanning lenses. A scanning lens lying closest to the deflector has a positive refractive power and the incident surface of it allows the oblique angle θ of the light beam entering the incident surface to vary from a center to an end of the incident surface. The incident surface satisfies the following conditions, where Δθ is the amount of change and dθ is the rate of change in the oblique angle θ of the light beam in the main scanning direction, d2θ is the rate of change in dθ, and Δ2θ is the amount of change in Δθ: d2θ
Abstract:
An optical scanning device includes a first aperture and an adjustment mechanism. The first aperture includes a first opening portion and a first cut portion. The first opening portion restricts a beam path width of a laser beam emitted from a light source. A first blocking member that blocks the laser beam is inserted in a detachable manner in the first cut portion in a direction perpendicular to a longitudinal direction of the first opening portion, at a predetermined position of the first cut portion. The adjustment mechanism is configured to adjust a fixed state of the first aperture.
Abstract:
An optical scanning device includes a cylindrical aperture, a support member, and a base portion. In the aperture, an opening portion that restricts a beam path width of a laser beam emitted from a light source is formed. The support member includes a cylinder supporting portion that pivotably supports the aperture. To the base portion, the support member is fixed by adhesion fixing. The base portion includes a pass-through portion that passes through between front and rear surfaces of the base portion and allows the support member to move in direction perpendicular to a pivoting axis of the aperture. The support member has a length such that its lower end portion projects from a rear surface of the base portion in the state where the support member has been inserted in the pass-through portion to such a position where laser beam is incident in the opening portion of the aperture.
Abstract:
An optical scanning device includes first and second light sources, a polygon mirror, first and second scanning lenses, first and second reflecting mirrors, and an adjusting mechanism for adjusting the posture of the first reflecting mirror. The adjusting mechanism adjusts the posture of the first reflecting mirror using a predetermined first adjustment amount so that a first scanning line drawn by a first light beam to scan a first circumferential surface and a second scanning line drawn by a second light beam to scan a second circumferential surface are parallel when a drum rotation speed is a predetermined first speed, and adjusts the posture of the first reflecting mirror using a predetermined second adjustment amount different from the first adjustment amount and capable of making the first and second scanning lines parallel at a second speed different from the first speed when the drum rotation speed is the second speed.
Abstract:
An optical scanning device (15) includes a reference light guide part (50); a sub-light guide part (40); a reference holding structure (53) which includes a reference reception part (55) configured so as to be in contact with the reference lens (52) deflected in a sub-scanning direction; a sub-holding structure (45) which includes a sub-reception part (45) configured so as to be in contact with the sub-lens (42) deflected in the sub-scanning direction, wherein a deflection direction of the reference lens (52) coincides with a deflection direction of the sub-lens (42), and when it is assumed that the reference lens (52) and the sub-lens (42) are not deflected, an absolute value of a smallest distance between the sub-reception part (45) and the sub-lens (42) is set to be equal to or larger than an absolute value of a smallest distance between the reference reception part (55) and the reference lens (52).
Abstract:
In an optical deflector, a polygon mirror and a drive motor are covered by a cover body including a first cover portion and a second cover portion. The first cover portion includes a top wall disposed above the polygon mirror, and a peripheral wall formed having a cylindrical shape extending downward from an outer peripheral end edge of the top wall and having a first opening opened by facing the deflection surface of the polygon mirror. The peripheral wall has an upper-end edge-defining portion and a lower-end edge-defining portion defining an opening end edge of the first opening, and the top wall has, on an inner surface side of a specific portion connected to the upper-end edge-defining portion, a first slope portion inclined downward toward the upper-end edge-defining portion.
Abstract:
An optical scanning device includes a housing, a transmissive member, a wire-shaped member, a driving portion, a cleaning holder, a cleaning member, a stopper, and a control portion. The control portion is capable of executing a cleaning mode including at least one of a forward travel operation of controlling the wire-shaped member to travel in a first direction so that the cleaning holder moves along the transmissive member and a backward travel operation of, after executing the forward travel operation, controlling the wire-shaped member to travel in a second direction so that the cleaning holder moves in an opposite direction to a direction of the forward travel operation. The control portion executes a load releasing operation of controlling the cleaning holder to move by a prescribed amount in an opposite direction to the direction of the forward travel operation or the direction of the backward travel operation.
Abstract:
In an optical deflector, a polygon mirror and a drive motor are covered by a cover body including a first cover portion and a second cover portion. The first cover portion includes a top wall disposed above the polygon mirror, and a peripheral wall formed having a cylindrical shape extending downward from an outer peripheral end edge of the top wall and having a first opening opened by facing the deflection surface of the polygon mirror. The peripheral wall has an upper-end edge-defining portion and a lower-end edge-defining portion defining an opening end edge of the first opening, and the top wall has, on an inner surface side of a specific portion connected to the upper-end edge-defining portion, a first slope portion inclined downward toward the upper-end edge-defining portion.
Abstract:
Disclosed is an optical deflector including a polygonal mirror and a drive motor each mounted on a substrate, a cover member covering the polygonal mirror and the drive motor, and an electronic component. The cover member includes: a first cover portion defining a first space in which the polygonal mirror is installed, wherein the first cover portion is formed with a first opening opened in opposed relation to an outer peripheral surface of the polygonal mirror; and a second cover portion defining a second space which is communicated with the first space and in which the drive motor is installed, wherein the second cover portion is formed with a second opening opened in opposed relation to a motor body of the drive motor. When viewed in the first direction, the electronic component is disposed such that it falls within an open region of the second opening.
Abstract:
Disclosed is an optical deflector including a polygonal mirror and a drive motor each mounted on a substrate, a cover member covering the polygonal mirror and the drive motor, and an electronic component. The cover member includes: a first cover portion defining a first space in which the polygonal mirror is installed, wherein the first cover portion is formed with a first opening opened in opposed relation to an outer peripheral surface of the polygonal mirror; and a second cover portion defining a second space which is communicated with the first space and in which the drive motor is installed, wherein the second cover portion is formed with a second opening opened in opposed relation to a motor body of the drive motor. When viewed in the first direction, the electronic component is disposed such that it falls within an open region of the second opening.