Abstract:
A touch sensor integrated display device is provided comprising gate lines and data lines formed on a substrate to be intersected with each other, a plurality of pixel electrodes formed at intersections between the gate lines and the data lines, and a common electrode formed to overlap the plurality of pixel electrodes through an insulating film disposed between the common electrode and the plurality of pixel electrodes, wherein the common electrode includes at least two touch electrodes, each of which is connected to at least one of signal lines arranged in one of a first direction and a second direction crossing the first direction.
Abstract:
A touch sensing system is disclosed. The touch sensing system includes an active stylus pen that generates a first pen driving signal for detecting a touch input in synchronization with a touch driving signal input from a touch screen and a second pen driving signal for detecting an additional input related to an additional function of the active stylus pen in a touch driving period and outputs the first and second pen driving signals to the touch screen; and a touch driving device that applies the touch driving signal to the touch screen, senses the first pen driving signal in a first period of the touch driving period, and senses the second pen driving signal in a second period of the touch driving period.
Abstract:
An active stylus pen is insensitive to external noise and has enhanced sensing performance with respect to an uplink signal input from a touch screen. The active stylus pen includes a housing connected to a ground, a conductive tip protruding outwardly from one side of the housing and brought into contact with a touch screen, a conductor layer surrounding an outer surface of the housing with an insulator interposed therebetween, a pen driving circuit connected to the conductor layer, and a switch connecting the conductor layer and the pen driving circuit. The pen driving circuit is cased by the housing, receives an uplink signal and a touch sensor driving signal from the touch screen, generates a pen driving signal synchronized with the touch sensor driving signal and outputs the generated pen driving signal to the touch screen through the conductive tip.
Abstract:
A touch sensor integrated type display device is disclosed. The device includes gate lines and data lines crossing the gate lines. It also includes pixel electrodes disposed in regions defined by crossings of the gate lines and the data lines. Further, the device includes common electrodes overlapping the pixel electrodes. The common electrodes include a group of first electrodes arranged in a first direction, and second electrodes disposed between the first electrodes and extending in a second direction substantially perpendicular to the first direction. The display device additionally includes first electrode connecting wires, each extending in the first direction and connected to a respective one of the first electrodes.
Abstract:
A touch sensor integrated type display device includes gate lines and data lines crossing over the gate lines, a plurality of pixel electrodes respectively disposed in areas defined by the crossing of the gate lines and the data lines, a plurality of 1-1 electrodes each of which is disposed correspondingly to some of the pixel electrodes and has a first size, a plurality of 1-2 electrodes connected to the plurality of 1-1 electrodes, each of which is disposed correspondingly to another some of the pixel electrodes, and has a second size greater than the first size, and a plurality of second electrodes, each of which is disposed between the 1-1 and 1-2 electrode and is arranged in a direction crossing the 1-1 and 1-2 electrodes. The two 1-1 electrodes are disposed between the 1-2 electrodes in parallel.
Abstract:
Disclosed is a touch sensor integrated type display device, that includes a plurality of gate lines and data lines which cross each other and form a plurality of pixel areas, a plurality of first electrodes arranged in parallel with one another in a first direction, a plurality of second electrodes which are formed on the same layer as the first electrodes and are arranged in parallel with one another in the first direction and a second direction crossing the first direction, and a plurality of pixel electrodes which are formed on a layer different from the first and second electrodes in the pixel areas and are positioned opposite the first and second electrodes. The first electrodes and the second electrodes arranged in parallel with one another in the first direction are alternately disposed every m electrode lines, where m is a natural number.
Abstract:
A touch sensor integrated type display device capable of reducing its thickness and simplifying its manufacturing process. The display device includes first electrodes, second electrodes, first connecting wires, and second connecting wires. The first electrodes are arranged on a substrate in parallel in a first direction, and the second electrodes are arranged in parallel in the first direction and a second direction crossing the first direction without contacting the first electrodes. Each first connecting wire is connected with at least one the first electrodes. Each second connecting wire connects the second electrodes to each other in the second direction. A touch driving voltage is supplied to the first connecting wires and a common voltage is supplied to the second connecting wires so that mutual capacitance is generated between the first electrodes and the second electrodes.
Abstract:
A touch sensor integrated type display device includes a plurality of gate lines, a plurality of data lines crossing over the plurality of the gate lines, a plurality of pixel electrodes formed in areas defined by crossing over the gate lines and the data lines, a plurality of first electrodes formed between pixel electrodes which are neighbored to each other with a gate line therebetween, a plurality of second electrodes, each of the second electrodes formed to overlap with at least one portion of the pixel electrode and arranged in parallel with the gate line, wherein one of the first and second electrodes serve as common electrodes for driving the display device.
Abstract:
A touch sensor integrated type display device includes a plurality of first electrodes arranged on a substrate in parallel in a first direction; a plurality of second electrodes arranged in parallel in the first direction and a second direction crossing the first direction without contacting the plurality of first electrodes; a plurality of first connecting wires, each first connecting wire being connected with at least one of the plurality of the first electrodes; and a plurality of second connecting wires, each second connecting wire connecting the second electrodes to each other in the second direction, wherein a touch driving voltage is supplied to the plurality of first connecting wires and a common voltage is supplied to the plurality of second connecting wires so that mutual capacitance is generated between the plurality of first electrodes and the plurality of second electrodes.