Abstract:
Disclosed is an organic light-emitting display device capable of realizing a high resolution. The organic light-emitting display device includes a storage capacitor disposed on a substrate, which overlaps at least one transistor, with at least one buffer layer interposed therebetween, the at least one buffer layer disposed on the storage capacitor, and which includes a lower storage electrode and an upper storage electrode overlapping the lower storage electrode, with a storage buffer layer interposed therebetween, and a light-emitting diode connected to the transistor. One of the lower storage electrode and the upper storage electrode is formed to have the same line width and the same shape as the storage buffer layer, thereby ensuring a sufficient process margin and consequently realizing a high resolution and improving production yield.
Abstract:
A display apparatus including two lines is provided. The two lines may extend in a first direction. A light-emitting device may be disposed between the two lines. Each line may be bent or extended in the direction of the device substrate which supports the light-emitting device. Thus, in the display apparatus, mixing of light emitted to the outside through the device substrate may be prevented. Therefore, in the display apparatus, the quality of realized image may be improved.
Abstract:
Disclosed is a display device with high resolution. The display device includes a substrate, a plurality of signal lines on the substrate, multiple buffer layers including at least one organic buffer layer and at least one inorganic buffer layer, and at least one transistor that overlaps one or more of the plurality of signal lines, with the multiple buffer layers interposed therebetween. Accordingly, it may be possible to ensure a sufficient process margin and consequently to realize a high resolution and improve production yield.
Abstract:
A display device includes: thin film transistors (TFTs) on a substrate, pixel electrodes (PEs) respectively connected to the TFTs, common electrode blocks (CEBs) on the substrate, each CEB forming an electric field with a respective PE, touch sensing lines (TSLs) respectively connected to the CEBs, a lower planarization layer (PL) between the TFTs and the TSLs, an upper PL between the TSLs and one of: the PEs and the CEBs, an upper protective film between the PEs and the CEBs, and pixel contact holes extending through the lower PL and the upper PL to expose respective drain electrodes of the TFTs, wherein a side surface of each of the lower PL and the upper PL, exposed through the pixel contact holes, contacts one of: the upper protective film and the PEs.
Abstract:
Disclosed are an organic light emitting display device which may implement high resolution and a method of manufacturing the same. A storage capacitor disposed on a substrate overlaps a plurality of transistors connected to a light emitting element with at least one buffer layer including an organic buffer layer interposed therebetween and, thus, a sufficient process margin may be assured, high resolution may be implemented and yield may be improved.
Abstract:
Disclosed is a display device with high resolution. The display device includes a substrate, a plurality of signal lines on the substrate, multiple buffer layers including at least one organic buffer layer and at least one inorganic buffer layer, and at least one transistor that overlaps one or more of the plurality of signal lines, with the multiple buffer layers interposed therebetween. Accordingly, it may be possible to ensure a sufficient process margin and consequently to realize a high resolution and improve production yield.
Abstract:
Disclosed are an organic light emitting display device which may implement high resolution and a method of manufacturing the same. A storage capacitor disposed on a substrate overlaps a plurality of transistors connected to a light emitting element with at least one buffer layer including an organic buffer layer interposed therebetween and, thus, a sufficient process margin may be assured, high resolution may be implemented and yield may be improved.
Abstract:
An organic light emitting diode display device capable of improving capacitance Cst of a storage capacitor and transmittance and a method of fabricating the same are disclosed. The organic light emitting diode display device includes a driving thin film transistor (TFT) formed on the substrate, a passivation film formed to cover the TFT driver, a color filter formed on the passivation film in a luminescent region, a planarization film formed to cover the color filter, a transparent metal layer formed on the planarization film, an insulating film formed on the transparent metal layer, a first electrode connected to the TFT driver and overlapping the transparent metal layer while interposing the insulating film therebetween, an organic light emitting layer and a second electrode which are sequentially formed on the first electrode. The transparent metal layer, the insulating film, and the first electrode constitute a storage capacitor in the luminescent region.
Abstract:
An organic light emitting diode display device capable of improving capacitance Cst of a storage capacitor and transmittance and a method of fabricating the same are disclosed. The organic light emitting diode display device includes a driving thin film transistor (TFT) formed on the substrate, a passivation film formed to cover the TFT driver, a color filter formed on the passivation film in a luminescent region, a planarization film formed to cover the color filter, a transparent metal layer formed on the planarization film, an insulating film formed on the transparent metal layer, a first electrode connected to the TFT driver and overlapping the transparent metal layer while interposing the insulating film therebetween, an organic light emitting layer and a second electrode which are sequentially formed on the first electrode. The transparent metal layer, the insulating film, and the first electrode constitute a storage capacitor in the luminescent region.