Abstract:
Disclosed are an organic light emitting display device to improve optical efficiency and prevent deterioration in reliability of thin film transistors, and a method of manufacturing the same. The organic light emitting display device includes a mirror wall which is disposed on a substrate such that the mirror wall surrounds a light emitting area of each sub-pixel where a light emitting element is disposed, thus preventing total reflection of light produced in the light emitting element and improving optical efficiency by reflecting light travelling toward a non-emitting area to be directed to the light emitting area.
Abstract:
An array substrate for a liquid crystal display (LCD) device include: a substrate; a gate line formed in one direction on one surface of the substrate; a data line crossing the gate line to define a pixel area; a thin film transistor (TFT) configured at a crossing of the gate line and the data line; a pixel electrode formed at a pixel region of the substrate; an insulating film formed on the entire surface of the substrate including the pixel electrode and the TFT, including a first insulating film formed of a high temperature silicon nitride film and a second insulating film formed of a low temperature silicon nitride film, and having a contact hole having an undercut shape exposing the pixel electrode; a pixel electrode connection pattern formed within the contact hole having an undercut shape and connected with the pixel electrode and the TFT; and a plurality of common electrodes separately formed on the insulating film.
Abstract:
A substrate for a display device and a display device including the same are disclosed. The substrate includes a first thin-film transistor including an oxide semiconductor layer, a second thin-film transistor spaced apart from the first thin-film transistor and including a polycrystalline semiconductor layer, and a storage capacitor including at least two storage electrodes. One of the at least two storage electrodes is located in the same layer and is formed of the same material as a gate electrode of the second thin-film transistor that is disposed under the polycrystalline semiconductor layer, and another one of the at least two storage electrodes is located above the polycrystalline semiconductor layer with at least one insulation film interposed therebetween. Accordingly, lower power consumption and a larger area of the substrate are realized.
Abstract:
Disclosed is an organic light-emitting display device capable of realizing a high resolution. The organic light-emitting display device includes a storage capacitor disposed on a substrate, which overlaps at least one transistor, with at least one buffer layer interposed therebetween, the at least one buffer layer disposed on the storage capacitor, and which includes a lower storage electrode and an upper storage electrode overlapping the lower storage electrode, with a storage buffer layer interposed therebetween, and a light-emitting diode connected to the transistor. One of the lower storage electrode and the upper storage electrode is formed to have the same line width and the same shape as the storage buffer layer, thereby ensuring a sufficient process margin and consequently realizing a high resolution and improving production yield.
Abstract:
Disclosed are an organic light emitting display device to improve an aperture ratio, and a method of manufacturing the same. The organic light emitting display device includes a plurality of contact holes overlapping an anode of an organic light emitting element in each sub-pixel region, wherein conductive films connected through at least one of the contact holes are transparent, thus allowing regions, where the contact holes are formed, to be used as light emitting regions, thereby improving an aperture ratio.
Abstract:
Disclosed are a display device and a method of manufacturing the same. In the disclosed display device, a pad cover electrode disposed on a pad area comes into contact with an upper surface and a side surface of a pad electrode since a planarization layer is disposed on an active area excluding the pad area, which may prevent contact failure between the pad cover electrode and a conductive ball. In addition, in the display device, a first electrode, which is connected to a thin film transistor via a pixel connection electrode, is formed via the same mask process as the planarization layer so that it has a line width similar to that of the planarization layer and overlaps the planarization layer, which may simplify a structure and a manufacturing process.
Abstract:
Disclosed is an organic light-emitting display device capable of realizing a high resolution. The organic light-emitting display device includes a storage capacitor disposed on a substrate, which overlaps at least one transistor, with at least one buffer layer interposed therebetween, the at least one buffer layer disposed on the storage capacitor, and which includes a lower storage electrode and an upper storage electrode overlapping the lower storage electrode, with a storage buffer layer interposed therebetween, and a light-emitting diode connected to the transistor. One of the lower storage electrode and the upper storage electrode is formed to have the same line width and the same shape as the storage buffer layer, thereby ensuring a sufficient process margin and consequently realizing a high resolution and improving production yield.
Abstract:
Disclosed is a display device capable of reducing the thickness and the weigh thereof. A display device having a touch sensor realizes electrical connection of a routing line and a touch pad via an auxiliary conductive layer, which is connected to the routing line under an encapsulation unit, even if a disconnection fault occurs in the routing line, thereby achieving increased yield and reliability. In addition, through the provision of a touch sensor disposed above the encapsulation unit, a separate attachment process is unnecessary, which results in a simplified manufacturing process and reduced costs.
Abstract:
A substrate for a display device and a display device including the same are disclosed. The substrate includes a first thin-film transistor including an oxide semiconductor layer, a second thin-film transistor spaced apart from the first thin-film transistor and including a polycrystalline semiconductor layer, and a storage capacitor including at least two storage electrodes. One of the at least two storage electrodes is located in the same layer and is formed of the same material as a gate electrode of the second thin-film transistor that is disposed under the polycrystalline semiconductor layer, and another one of the at least two storage electrodes is located above the polycrystalline semiconductor layer with at least one insulation film interposed therebetween. Accordingly, lower power consumption and a larger area of the substrate are realized.
Abstract:
Disclosed are an organic light emitting display device improving opening ratio and a method of fabricating the same. The organic light emitting display device includes a light emitting device disposed at each sub-pixel of a substrate, a pixel circuit driving the light emitting device, a bank providing a first light emitting region at a remaining region except for a region where the pixel circuit is disposed, and a second light emitting region at the region where the pixel circuit is disposed, and a color filter disposed at the first and second light emitting regions, wherein at least one of electrodes included in the pixel circuit includes a transparent conductive layer at the second light emitting region.