Abstract:
Embodiments of the present invention are directed to a method and apparatus for transmitting and receiving a control signal (for example, PDCCH signal) in an asymmetric multicarrier environment. The method for transmitting a control signal for an asymmetric multicarrier in a wireless connection system according to one embodiment of the present invention comprises: determining the size of a carrier indicator field (CIF) indicating a downlink component carrier (DL CC) by which downlink data is transmitted, on the basis of a maximum value of the number of DL CCs and of the number of uplink component carriers (UL CCs) being managed in a base station; transmitting the CIF on a 1st DL CC to a terminal through a physical downlink control channel (PDCCH); and transmitting downlink data on a 2nd DL CC indicated by the CIF to the terminal through a physical downlink shared channel (PDSCH).
Abstract:
Provided are a method for receiving information on a relay node zone and reference signals for a relay node from a base station, and a relay node device using same. The relay node can receive information on at least one start point from the start points of a Relay-Physical Downlink Control Channel (R-PDCCH) and a Relay-Physical Downlink Shared Channel (R-PDSCH) for transmitting a signal from a base station to a relay node in a specific downlink subframe. Alternatively, the relay node can implicitly recognize the start points of the R-PDCCH and R-PDSCH set in advance. The relay node can recognize a signal from the base station in the specific downlink subframe based on the start point information after the time corresponding to at least one of the start points of the R-PDCCH and R-PDSCH. Also, the relay node can decode signals transmitted from a base station after the corresponding timing.
Abstract:
The present disclosure relates to an operating method of a terminal for transceiving data to/from a base station in a system that supports a plurality of component carriers. The method includes receiving, from the base station, downlink control information (DCI) masked using a terminal identifier (cell-radio network temporary identifier (C-RNTI)) or a semi-persistent scheduling terminal identifier (SPS C-RNTI) through a physical downlink control channel (PDCCH); determining a component carrier for transceiving data to/from the base station; and transceiving data to/from the base station through the determined component carrier. The determining includes determining the component carrier which has received the PDCCH as a component carrier for receiving downlink data, and determining an uplink component carrier linked with the component carrier which has received the PDCCH as a component carrier for transmitting uplink data.
Abstract:
A wireless communication system is disclosed. Disclosed herein are methods for transmitting a physical uplink control channel (PUCCH) signal in a wireless communication system, which includes setting transmit power for the PUCCH signal, and an apparatus thereof. If the PUCCH signal is transmitted on a subframe configured for a scheduling request (SR), the PUCCH signal includes one or more hybrid automatic repeat request acknowledgement (HARQ-ACK) bits and an SR bit. When determining the transmit power for the PUCCH, the SR bit is selectively considered depending on whether or not a transport block for an uplink shared channel (UL-SCH) is present in the subframe.
Abstract:
A wireless communication system is disclosed. Disclosed herein are methods for transmitting a physical uplink control channel (PUCCH) signal in a wireless communication system, which includes setting transmit power for the PUCCH signal, and an apparatus thereof. If the PUCCH signal is transmitted on a subframe configured for a scheduling request (SR), the PUCCH signal includes one or more hybrid automatic repeat request acknowledgement (HARQ-ACK) bits and an SR bit. When determining the transmit power for the PUCCH, the SR bit is selectively considered depending on whether or not a transport block for an uplink shared channel (UL-SCH) is present in the subframe.
Abstract:
A device and method for communicating by a mobile communication terminal in communication with a base station. The method according to an embodiment includes exchanging a frame of data with the base station. The frame of data includes a) a plurality of first subframes each having a first number of orthogonal frequency division multiple access (OFDMA) symbols, and b) a plurality of second subframes each having a second number of orthogonal frequency division multiple access (OFDMA) symbols different from the first number. A first and a last subframe each includes one of the plurality of first subframes.