Abstract:
A dual mode end effector is disclosed. The dual mode end effector includes a bridge member having a first end and a second end, wherein the bridge member includes a first substantially axial flange extending from the first and, wherein the bridge member includes a second substantially axial flange extending from the second end; a tire/wheel gripping assembly connected to the bridge member, wherein the tire/wheel gripping assembly includes a pair of substantially axial members, a substantially radial support member, and a pair of radially-projecting engaging assemblies, wherein the pair of substantially axial members are movably-supported upon the substantially radial support member, wherein a first end of the substantially radial support member is connected to the first substantially axial flange of the bridge member, wherein the a second end of the substantially radial support member is connected to the second substantially axial flange of the bridge member, wherein a first radially-projecting engaging assembly of the pair of radially-projecting engaging assemblies is connected to an inner radial surface of a first substantially axial member of the pair of substantially axial members, wherein a second radially-projecting engaging assembly of the pair of radially-projecting engaging assemblies is connected to an inner radial surface of a second substantially axial member of the pair of substantially axial members.
Abstract:
A system for mounting a tire and a wheel is disclosed. The system includes a robotic arm pivotably-connected to an end effector. The system also includes a tire-supporting portion including a support surface and a pair of wheel-engaging and tire-manipulating portions disposed upon the support surface. The pair of wheel-engaging and tire-manipulating portions includes a first wheel-engaging and tire-manipulating portion fixedly-disposed relative the support surface and a second wheel-engaging and tire-manipulating portion movably-disposed relative the support surface.
Abstract:
An inflation work station for inflating a tire-wheel assembly including a tire mounted to a wheel is disclosed. The inflation work station includes a working device having an end effecter. The end effecter includes a wheel-engaging plunger member, a retaining apparatus connected to the wheel-engaging plunger member, and an inflation apparatus connected to the wheel-engaging plunger member. The retaining apparatus includes at least one tire-engaging portion extending from a retaining apparatus base member. The inflation apparatus includes at least one inflation probe extending from an inflation apparatus base member. A method for operating an inflation work station is also disclosed.
Abstract:
An inflation work station for inflating a tire-wheel assembly including a tire mounted to a wheel is disclosed. The inflation work station includes an inflation probe including a female portion and a male portion. The inflation work station further includes a movement actuator connected to a controller and the inflation probe. The movement actuator imparts movement to the male portion of the inflation probe to result in the online/offline orientation of the at least one inflation probe. The inflation workstation includes pressurized fluid source connected to the inflation probe by way of a valve to permit or deny communication of a pressurized fluid through the inflation probe to a cavity formed by the tire-wheel assembly for inflating the tire-wheel assembly. A method is also disclosed.
Abstract:
An apparatus for assembling a tire and a wheel is disclosed. The apparatus includes a single-cell workstation including a device that retains a wheel, and a plurality of sub-stations. The device moves the wheel to each of the plurality of sub-stations, without releasing the wheel, to assemble a tire-wheel assembly. A method is also disclosed.
Abstract:
A dual mode end effector is disclosed. The dual mode end effector includes a bridge member having a first end and a second end, wherein the bridge member includes a first substantially axial flange extending from the first and, wherein the bridge member includes a second substantially axial flange extending from the second end; a tire/wheel gripping assembly connected to the bridge member, wherein the tire/wheel gripping assembly includes a pair of substantially axial members, a substantially radial support member, and a pair of radially-projecting engaging assemblies, wherein the pair of substantially axial members are movably-supported upon the substantially radial support member, wherein a first end of the substantially radial support member is connected to the first substantially axial flange of the bridge member, wherein the a second end of the substantially radial support member is connected to the second substantially axial flange of the bridge member, wherein a first radially-projecting engaging assembly of the pair of radially-projecting engaging assemblies is connected to an inner radial surface of a first substantially axial member of the pair of substantially axial members, wherein a second radially-projecting engaging assembly of the pair of radially-projecting engaging assemblies is connected to an inner radial surface of a second substantially axial member of the pair of substantially axial members.
Abstract:
An inflation work station for inflating a tire-wheel assembly including a tire mounted to a wheel is disclosed. The inflation work station includes a working device having an end effecter. The end effecter includes a wheel-engaging plunger member, a retaining apparatus connected to the wheel-engaging plunger member, and an inflation apparatus connected to the wheel-engaging plunger member. The retaining apparatus includes at least one tire-engaging portion extending from a retaining apparatus base member. The inflation apparatus includes at least one inflation probe extending from an inflation apparatus base member. A method for operating an inflation work station is also disclosed.
Abstract:
A system for mounting a tire and a wheel is disclosed. The system includes a robotic arm pivotably-connected to an end effector. The system also includes a tire-supporting portion including a support surface and a pair of wheel-engaging and tire-manipulating portions disposed upon the support surface. The pair of wheel-engaging and tire-manipulating portions includes a first wheel-engaging and tire-manipulating portion fixedly-disposed relative the support surface and a second wheel-engaging and tire-manipulating portion movably-disposed relative the support surface.
Abstract:
A single-cell workstation for processing a tire-wheel assembly including a tire and a wheel is disclosed. The single-cell workstation includes a mounting and indexing sub-station including a first plurality of tire engaging portions including one or more first tire-engaging surfaces, and a second plurality of tire engaging portions including one or more second tire-engaging surfaces.
Abstract:
An apparatus for processing a tire and a wheel for forming a tire wheel assembly is disclosed. The apparatus includes a tire support member including a first tire support member, a second tire support member and a third tire support member. Each of the first, second and third tire support members include an upper surface and a lower surface. The apparatus includes a plurality of tire engaging devices including a first tire tread engaging post and a second tire tread engaging post. A method for processing a tire and a wheel for forming a tire wheel assembly is also disclosed.