摘要:
A manufacturing process is migrated from an existing operation to a configure-to-order (CTO) system. As the CTO operation will eliminate the “machine-type model” (MTM) inventory of the existing operation, the emphasis is shifted to the components, or “building blocks”, which will still follow the build-to-stock scheme, due to their long leadtimes, and hence still require inventory. The solution involves an inventory-service trade-off of the new CTO system, resulting in performance gains, in terms of reduced inventory cost and increased service level. Other benefits include better forecast accuracy through parts commonality and risk-pooling, and increased customer demand, as orders will no longer be confined within a restricted set of pre-configured MTMs.
摘要:
A manufacturing process is migrated from an existing operation to a configure-to-order (CTO) system. As the CTO operation will eliminate the “machine-type model” (MTM) inventory of the existing operation, the emphasis is shifted to the components, or “building blocks”, which will still follow the build-to-stock scheme, due to their long leadtimes, and hence still require inventory. The solution involves an inventory-service trade-off of the new CTO system, resulting in performance gains, in terms of reduced inventory cost and increased service level. Other benefits include better forecast accuracy through parts commonality and risk-pooling, and increased customer demand, as orders will no longer be confined within a restricted set of pre-configured MTMs.
摘要:
A manufacturing process is migrated from an existing operation to a configure-to-order (CTO) system. As the CTO operation will eliminate the “machine-type model” (MTM) inventory of the existing operation, the emphasis is shifted to the components, or “building blocks”, which will still follow the build-to-stock scheme, due to their long leadtimes, and hence still require inventory. The solution involves an inventory-service trade-off of the new CTO system, resulting in performance gains, in terms of reduced inventory cost and increased service level. Other benefits of the method include better forecast accuracy through parts commonality and risk-pooling, and increased customer demand, as orders will no longer be confined within a restricted set of pre-configured MTMs.
摘要:
A manufacturing process is migrated from an existing operation to a configure-to-order (CTO) system. As the CTO operation will eliminate the “machine-type model” (MTM) inventory of the existing operation, the emphasis is shifted to the components, or “building blocks”, which will still follow the build-to-stock scheme, due to their long leadtimes, and hence still require inventory. The solution involves an inventory-service trade-off of the new CTO system, resulting in performance gains, in terms of reduced inventory cost and increased service level. Other benefits include better forecast accuracy through parts commonality and risk-pooling, and increased customer demand, as orders will no longer be confined within a restricted set of pre-configured MTMs.
摘要:
A manufacturing process is migrated from an existing operation to a configure-to-order (CTO) system. As the CTO operation will eliminate the “machine-type model” (MTM) inventory of the existing operation, the emphasis is shifted to the components, or “building blocks”, which will still follow the build-to-stock scheme, due to their long leadtimes, and hence still require inventory. The solution involves an inventory-service trade-off of the new CTO system, resulting in performance gains, in terms of reduced inventory cost and increased service level. Other benefits include better forecast accuracy through parts commonality and risk-pooling, and increased customer demand, as orders will no longer be confined within a restricted set of pre-configured MTMs.
摘要:
A method resolves the problem of projecting future stock levels for multiple stockholding locations in production-distribution networks, and minimizing the total dollar delinquency within given inventory budgets or within given allowable inventory holding costs. The invention communicates process control parameters and production-distribution network parameters, computes priorities for each product held at retail locations of the distribution network. It allocates available global and local budgets among products, sets starting stock levels for each product, computes and displays stock levels and the distribution network performance measures.
摘要:
Freshness inventory control problem may be formulated as a stochastic dynamic program. In one aspect, a stochastic dynamic programming formulation takes as input inventory status, stochastic demand forecast and cost information associated with on-hand inventory. The stochastic dynamic programming formulation is maximized to determine order quantity and depletion quantity of the product per period.
摘要:
Distributing disaster relief supplies, in one aspect, may include determining cross shipping of disaster relief supplies between points of distribution using one or more combinations of information. The information may include one or more of on-hand inventory of each point of distribution, in-transit inventory to each point of distribution, demand queue of disaster victims at each point of distribution, traveling time between supply staging area and points of distribution, traveling time between points of distribution, number of transportation vehicles available for cross shipping, minimum batch size for cross shipping, frequency of cross shipping, and point of distribution activation status, or combinations thereof.
摘要:
Freshness inventory control problem may be formulated as a stochastic dynamic program. In one aspect, a stochastic dynamic programming formulation takes as input inventory status, stochastic demand forecast and cost information associated with on-hand inventory. The stochastic dynamic programming formulation is maximized to determine order quantity and depletion quantity of the product per period.
摘要:
The present invention provides a method, a system, and a computer-readable medium with instructions for a computer to optimize one or more tradeoffs between or among serviceability, liability, and/or inventory in a multi-tier network of suppliers. The probabilistic optimization of tradeoffs enables assets stored at one or a plurality of tiers in the network to be optimally transferred downstream with certain probabilities. The multi-tier network of suppliers may consist of at least one original equipment manufacturer tier and at least one supplier tier.