摘要:
A manufacturing process is migrated from an existing operation to a configure-to-order (CTO) system. As the CTO operation will eliminate the “machine-type model” (MTM) inventory of the existing operation, the emphasis is shifted to the components, or “building blocks”, which will still follow the build-to-stock scheme, due to their long leadtimes, and hence still require inventory. The solution involves an inventory-service trade-off of the new CTO system, resulting in performance gains, in terms of reduced inventory cost and increased service level. Other benefits of the method include better forecast accuracy through parts commonality and risk-pooling, and increased customer demand, as orders will no longer be confined within a restricted set of pre-configured MTMs.
摘要:
A manufacturing process is migrated from an existing operation to a configure-to-order (CTO) system. As the CTO operation will eliminate the “machine-type model” (MTM) inventory of the existing operation, the emphasis is shifted to the components, or “building blocks”, which will still follow the build-to-stock scheme, due to their long leadtimes, and hence still require inventory. The solution involves an inventory-service trade-off of the new CTO system, resulting in performance gains, in terms of reduced inventory cost and increased service level. Other benefits include better forecast accuracy through parts commonality and risk-pooling, and increased customer demand, as orders will no longer be confined within a restricted set of pre-configured MTMs.
摘要:
A manufacturing process is migrated from an existing operation to a configure-to-order (CTO) system. As the CTO operation will eliminate the “machine-type model” (MTM) inventory of the existing operation, the emphasis is shifted to the components, or “building blocks”, which will still follow the build-to-stock scheme, due to their long leadtimes, and hence still require inventory. The solution involves an inventory-service trade-off of the new CTO system, resulting in performance gains, in terms of reduced inventory cost and increased service level. Other benefits include better forecast accuracy through parts commonality and risk-pooling, and increased customer demand, as orders will no longer be confined within a restricted set of pre-configured MTMs.
摘要:
A method resolves the problem of projecting future stock levels for multiple stockholding locations in production-distribution networks, and minimizing the total dollar delinquency within given inventory budgets or within given allowable inventory holding costs. The invention communicates process control parameters and production-distribution network parameters, computes priorities for each product held at retail locations of the distribution network. It allocates available global and local budgets among products, sets starting stock levels for each product, computes and displays stock levels and the distribution network performance measures.
摘要:
A manufacturing process is migrated from an existing operation to a configure-to-order (CTO) system. As the CTO operation will eliminate the “machine-type model” (MTM) inventory of the existing operation, the emphasis is shifted to the components, or “building blocks”, which will still follow the build-to-stock scheme, due to their long leadtimes, and hence still require inventory. The solution involves an inventory-service trade-off of the new CTO system, resulting in performance gains, in terms of reduced inventory cost and increased service level. Other benefits include better forecast accuracy through parts commonality and risk-pooling, and increased customer demand, as orders will no longer be confined within a restricted set of pre-configured MTMs.
摘要:
A method for providing inventory optimization for levels of products in a complex supply chain network for multiple internal supplier or manufacturer locations and external distributor or retailer locations. The invention constructs a representative supply chain network model to indicate the flow of products between internal and external locations, it determines inventory levels and fill rates to meet the service level requirements, calculates a total inventory cost for all products in the network, and optimizes the fill rates based on estimated gradient information of the total inventory cost.
摘要:
A method for determining procurement for parts (P) in a production system having constraints comprising at least one of constrained resources (r.sub.i) and known maximum demands (d.sub.j). The method comprises two steps. Step 1 includes constructing a production planning decision space comprising independent sets of hyperplanes defined by decision variables (q.sub.j) corresponding to product quantities for products (j). The constructing step subsumes steps of expressing a potential usage of part (p) as a linear combination of production quantities (q.sub.j) based on bill of material usage rules; limiting the production quantities (q.sub.j) so that each is less than or equal to the maximum demand quantity (d.sub.j); and limiting the production quantities (q.sub.i) so that the usage of each resource (r) is based on bill of material and bill of capacity usage rates less than or equal to the availability of that resource. For each part p, the second step includes locating a region in the decision space corresponding to a high level of usage of part (p).