Abstract:
A method for performing multi-camera capturing control of an electronic device and an associated apparatus are provided, where the method can be applied to the electronic device. The method may include the steps of: obtaining a plurality of preview images, wherein the plurality of preview images are generated by using at least one lens module of the electronic device; generating at least one distance-related index according to characteristics of the plurality of preview images; and according to the aforementioned at least one distance-related index, selectively controlling whether to allow multi-camera capturing or controlling whether to output warning information. For example, when it is detected that a specific distance-related index within the aforementioned at least one distance-related index falls within a predetermined range, a notification which indicates that a multi-camera capturing function of the electronic device is allowed to be triggered may be output, in order to guarantee the overall performance.
Abstract:
A method for performing multi-camera capturing control of an electronic device and an associated apparatus are provided, where the method can be applied to the electronic device. The method may include the steps of: obtaining a plurality of preview images, wherein the plurality of preview images are generated by using at least one lens module of the electronic device; generating at least one distance-related index according to characteristics of the plurality of preview images; and according to the aforementioned at least one distance-related index, selectively controlling whether to allow multi-camera capturing or controlling whether to output warning information. For example, when it is detected that a specific distance-related index within the aforementioned at least one distance-related index falls within a predetermined range, a notification which indicates that a multi-camera capturing function of the electronic device is allowed to be triggered may be output, in order to guarantee the overall performance.
Abstract:
A method for denoising images by block-matching three-dimensional (BM3D) method is disclosed in the present invention. Embodiments of the present invention are used to improve the quality of captured images. Instead of using the same noise variance to denoise all patches of an image, each patch is processed based on a particular assessed noise variance. The assessed noise variance of one reference patch is determined based on noise variance associated with the patch set or based on content characteristics associated with the patch set. The patch set is obtained by block-matching to find similar patches of the reference patch. Noise reduction in frequency domain is applied to the patch set according to the assessed noise variance of the reference patch. The determining of the assessed noise variance can be performed in spatial domain or in frequency domain.
Abstract:
One image processing method has at least the following steps: receiving an image input in a device, wherein the image input is composed of at least one source image; receiving image selection information; regarding a source image included in the image input, checking the image selection information to determine whether the source image is selected or skipped; and performing an object oriented image processing operation upon each selected source image. Another image processing method has at least the following steps: receiving an image input in a device, wherein the image input is composed of at least one source image; receiving algorithm selection information; and regarding a source image included in the image input, checking the algorithm selection information to determine a selected image processing algorithm from a plurality of different image processing algorithms, and performing an image processing operation upon the source image based on the selected image processing algorithm.
Abstract:
One video coding method includes at least the following steps: utilizing a visual quality evaluation module for evaluating visual quality based on data involved in a coding loop; and referring to at least the evaluated visual quality for performing motion estimation. Another video coding method includes at least the following steps: utilizing a visual quality evaluation module for evaluating visual quality based on data involved in a coding loop; and referring to at least the evaluated visual quality for deciding a target coding parameter associated with motion estimation.
Abstract:
An image resizing method includes at least the following steps: receiving at least one input image; performing an image content analysis upon at least one image selected from the at least one input image to obtain an image content analysis result; and creating a target image with a target image resolution by scaling the at least one input image according to the image content analysis result, wherein the target image resolution is different from an image resolution of the at least one input image.
Abstract:
One video coding method includes at least the following steps: utilizing a visual quality evaluation module for evaluating visual quality based on data involved in a coding loop; and referring to at least the evaluated visual quality for performing de-blocking filtering. Another video coding method includes at least the following steps: utilizing a visual quality evaluation module for evaluating visual quality based on data involved in a coding loop; and referring to at least the evaluated visual quality for deciding a target coding parameter associated with de-blocking filtering.
Abstract:
A preview system of an image capture apparatus has a processing circuit and a display apparatus. The processing circuit reads an input image, scales at least a portion of the input image to generate a first preview image, and derives a second preview image from a selected portion of the input image. The display apparatus displays the first preview image and the second preview image, concurrently. Besides, a preview method for an image capture apparatus includes at least the following steps: reading an input image; scaling at least a portion of the input image to generate a first preview image; deriving a second preview image from a selected portion of the input image; and displaying the first preview image and the second preview image on a display apparatus, concurrently.
Abstract:
A video frame processing method, which comprises: (a) capturing at least two video frames via a multi-view camera system comprising a plurality of cameras; (b) recording timestamps for each the video frame; (c) determining a major camera and a first sub camera out of the multi-view camera system, based on the timestamps, wherein the major camera captures a major video sequence comprising at least one major video frame, the first sub camera captures a video sequence of first view comprising at least one video frame of first view; (d) generating a first reference video frame of first view according to one first reference major video frame of the major video frames, which is at a reference timestamp corresponding to the first reference video frame of first view, and according to at least one the video frame of first view surrounding the reference timestamp; and (e) generating a multi-view video sequence comprising a first multi-view video frame, wherein the first multi-view video frame is generated based on the first reference video frame of first view and the first reference major video frame.
Abstract:
A control method of an electronic device with an image capture function is provided. The control method includes the following steps: detecting a distance between the electronic device and at least one subject in a scene to be captured to generate a distance detection result; and utilizing a controller for referring to the distance detection result to determine whether to turn on or turn off a flashlight of the electronic device to capture the scene.