摘要:
A method to obtain polarization characteristics of an optical transmission medium is disclosed. Sequentially plural different states of polarized light are launched into the optical transmission medium. Intensities of light emerging from the optical transmission medium through combinations of optical elements are measured to obtain Stokes parameters from which Stokes vectors describing the emerging light corresponding to each of the plural sequentially launched states of polarization are obtained; for at least three different launched states of polarization, descriptors are used of these launched states of polarization and the Stokes vectors describing the corresponding emerging light to calculate a Jones matrix which mathematically models the changes that the launched light when described in terms of a Jones vector is subject to when passing through the optical transmission medium; and, the Jones matrix is used to describe the polarization characteristics of the optical transmission medium.
摘要:
In an optical gain equalizer according to the present invention, a plurality of etalon filters 1 and one ore more fiber gratings 2 or dielectric multilayer filters 3 are arranged in line, and a beam of light externally applied is passed through the etalon filters 1 and the fiber gratings 2 or dielectric multilayer filters 3 and outputted to the outside, and the etalon filters 1 have sinusoidal wave loss characteristic of the same amplitude and period as those of the term obtained by Fourier series expansion of the loss wavelength characteristic for gain flattening, and the one or more fiber gratings 2 or dielectric multilayer filters 3 compensate the ripple component remaining as the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic owing to the etalon filters 1. An optical amplifying device 14 is constituted by combining an optical amplifier 5 with the optical gain equalizer 4. A wavelength-division multiplex transmitter is constituted by using the optical amplifying device 14.
摘要:
A wavelength converter using difference frequency generation (DFG) is disclosed. In one embodiment, the wavelength converter comprises (a) a first optical filter configured to filter out one or more lightwaves requiring wavelength conversion from wavelength-division multiplexed (WDM) lightwaves, and (b) a broadband multi-channel simultaneous wavelength conversion portion comprising a pump source that generates pump light for use in the process of the DFG, a first optical combiner for combining said pump light with said filtered lightwaves, a high non-linear medium configured to generate wavelength converted lightwaves from said filtered lightwaves using the DFG, and a second optical filter for filtering said wavelength converted from said filtered lightwaves.
摘要:
A wavelength of pump is set to an anomalous dispersion area of an optical fiber for wavelength conversion and pump power is set to be larger than a predetermined threshold of MI so that wavelength conversion capable of flattening conversion efficiency spectrum within a wide bandwidth is permitted. A pumping source can oscillate a lightwave having a wavelength in the anomalous dispersion region of the optical fiber for wavelength conversion and intensity which can flatten the conversion efficiency spectrum over the wide bandwidth. By causing the DFWM by setting the wavelength of the pump to a wavelength &lgr;p with respect to an optical signal having a center wavelength &lgr;s, the optical signal is converted to a wavelength &lgr;c=(&lgr;s·&lgr;p)/(2&lgr;s−&lgr;p), and by previously seeking the wavelength &lgr;s of the optical signal before conversion and the wavelength &lgr;c of the optical signal after conversion, the wavelength of the pump is set to the wavelength &lgr;p=2(&lgr;s·&lgr;c)/(&lgr;s+&lgr;c), and the wavelength of the pump can flatten the conversion efficiency.
摘要:
Solely lightwaves required to be wavelength converted are filtered out from the input broadband WDM lightwaves and are wavelength converted by use of FWM. Not only the broadband simultaneous wavelength conversion that is studied by many researchers, but also more flexible, sub-band wavelength conversion is realized. Frequency interval of the input WDM lightwaves is broadened or reduced in comparison of the frequency interval of the WDM lightwaves inputted to the wavelength converter. The frequency interval variation techniques using the wavelength converter, it can be realized to transfer from a transmission line less influenced by inter-channel crosstalk due to FWM to the different transmission lines strongly influenced by inter-channel crosstalk due to FWM, and vice versa.
摘要:
The present invention effectively compensates gain wavelength dependency of optical amplifiers by a simple method. That is, a value smaller than the minimum value of gain, in the range of usage wavelengths, of gain wavelength dependency data of the optical amplifiers is predetermined as a reference gain value. A loss wavelength characteristic which counterbalances the gain greater than the reference gain value is provided as an ideal loss wavelength characteristic which completely compensates the gain wavelength dependency.