Abstract:
A percutaneous stented valve delivery device including an inner shaft, a sheath, and a delivery capsule. The sheath slidably receives the inner shaft. A capsule proximal zone is attached to the sheath. A capsule distal zone is configured to transition between normal and flared states. A diameter of the distal zone is greater in the flared state, and the capsule includes a shape memory component that naturally assumes the normal state. The device is operable to perform a reversible partial deployment procedure in which a portion of the prosthesis is exposed distal the capsule and allowed to radially expand. Subsequently, with distal advancement of the capsule, the distal zone transitions to the flared state and imparts a collapsing force onto the prosthesis, causing the prosthesis to radially collapse and become recaptured within the delivery capsule. The capsule can include a laser cut tube encapsulated by a polymer.
Abstract:
A method of preventing paravalvular leakage includes concurrent delivery of a heart valve prosthesis and an annular sealing component. During delivery, the sealing component is moved from a first position to a second position of the heart valve prosthesis which is longitudinally spaced apart from the first position of the heart valve prosthesis. The sealing component is secured around the heart valve prosthesis at the second position by a contoured outer surface of the heart valve prosthesis. The sealing component may be a flexible ring or may be a cylindrical flexible sleeve having a plurality of ribs longitudinally extending over the cylindrical sleeve. The ribs operate to deploy the sealing component such that at least a portion of the cylindrical sleeve buckles outwardly away from the outer surface of the heart valve prosthesis.
Abstract:
A delivery system for use with a prosthetic heart valve having a stent frame to which a valve structure is attached includes a shaft assembly including a distal end, an intermediate portion, and a first coupling structure disposed near the distal end and configured to be coupled to a distal end of the prosthetic heart valve via a first tether. A sheath assembly defines a lumen sized to slidably receive the shaft assembly. The delivery system is configured to transition from a loaded state in which the sheath assembly encompasses the prosthetic heart valve to a deployed state in which the sheath assembly is withdrawn from the prosthetic heart valve. The first coupling structure is configured to be manipulated in a first direction to provide a controlled expansion or contraction of the distal end of the prosthetic heart valve.
Abstract:
A percutaneous stented valve delivery device including an inner shaft, a sheath, and a delivery capsule. The sheath slidably receives the inner shaft. A capsule proximal zone is attached to the sheath. A capsule distal zone is configured to transition between normal and flared states. A diameter of the distal zone is greater in the flared state, and the capsule includes a shape memory component that naturally assumes the normal state. The device is operable to perform a reversible partial deployment procedure in which a portion of the prosthesis is exposed distal the capsule and allowed to radially expand. Subsequently, with distal advancement of the capsule, the distal zone transitions to the flared state and imparts a collapsing force onto the prosthesis, causing the prosthesis to radially collapse and become recaptured within the delivery capsule. The capsule can include a laser cut tube encapsulated by a polymer.