Abstract:
A delivery system for delivering an implantable stented device to a lumen of a patient, the delivery system including an elongated body having a proximal end and a distal end, a driver mechanism positioned at the proximal end of the elongated body, an elongated threaded rod located axially distal to the driver mechanism, and a sheath including an elongated tubular portion having a hollow interior portion with a first diameter that is sized for compression and retention of the implantable stented device in a compressed configuration for delivery to a body lumen.
Abstract:
A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stented valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.
Abstract:
A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stewed valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.
Abstract:
A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stented valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.
Abstract:
In a method of accessing and closing a vessel, a vessel is percutaneously accessed through a first opening in the vessel wall at a first location. A stent-graft is delivered through the first opening to a second location. The stent-graft is deployed at the second location. The vessel is then accessed through a second opening through the vessel wall at the second location, wherein the second opening is generally aligned with a fenestration through the graft material of the stent-graft. A delivery device is advanced through the second opening, the fenestration, and the stent-graft lumen to a third location spaced from the first location and the second location. After the delivery device is retracted through the lumen of the stent-graft and out of the fenestration and the second opening, the stent graft is rotated or translated such that the fenestration is not aligned with the second opening.
Abstract:
A delivery system for an implantable stented device having a handle with a plurality of actuation members, each actuation member connected to one or more stent attachment elements, a sheath having a proximal end attached to the handle, and a plurality of tubes extending within the sheath. The stent attachment elements extend from distal ends of the tubes. A first actuation member is configured to move a first stent attachment element proximally toward the handle and a second actuation member is configured to move a second stent attachment element proximally toward the handle, sequentially releasing specific portions of the stented device by causing distal ends of the stent attachment elements to contact an exterior of the distal ends of the tubes, thereby disengaging the first and second stent attachment elements from the stented device.
Abstract:
A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stented valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.
Abstract:
A delivery system for delivering an implantable stented device to a lumen of a patient, the delivery system including an elongated body having a proximal end and a distal end, a driver mechanism positioned at the proximal end of the elongated body, an elongated threaded rod located axially distal to the driver mechanism, and a sheath including an elongated tubular portion having a hollow interior portion with a first diameter that is sized for compression and retention of the implantable stented device in a compressed configuration for delivery to a body lumen.
Abstract:
Embodiments of the present invention provide prosthetic valves having sealing members on the external surface thereof. The prosthetic heart valves of the present invention are preferably delivered by catheter directly through the apex of the heart or by other close range transcatheter delivery methods. Because these methods of implantation require a shorter length of catheter, a prosthetic valve can be more accurately oriented in the desired implantation location. Fluoroscopy can be used to further assist in orientation of the valve. The sealing members of the present invention can be positioned on the prosthetic valve such that, when the prosthetic valve is implanted in a native annulus, each provided sealing member is located adjacent to a commissural point of the native valve leaflets. Because the sealing members are precisely oriented on the prosthetic valve, a physician can ensure that the sealing members are aligned with the commissural points of the native valve leaflets. In embodiments of the present invention, the prosthetic valve can have a waisted middle section, and the sealing members can be located in the waisted middle section such that the crimped diameter of the prosthetic valve is not negatively impacted by the sealing, members.
Abstract:
A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stented valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.