Abstract:
Methods and systems of making a medical electrical lead type having a set of tines. A system for implantation of a lead medical electrical lead in contact with heart tissue, comprises an elongated lead body; a set of curved tines mounted to and extending from a distal end of the lead body, the tines having a length (dD) and an effective cross sectional area, and a delivery catheter. The delivery catheter encloses the lead body and has a distal capsule portion enclosing the tines. The tines exerting a spring force against the capsule and provide a stored potential energy. The delivery catheter has an elastic, not stiff and low column strength ejection means for advancing the lead and tines distally from the capsule and fixating the tines within the heart tissue, the controllable and the stored potential energy of the tines together provide a deployment energy. The tines when so fixated in the tissue provide a fixation energy. The deployment energy and the fixation energy of the tines are equivalent.
Abstract:
A medical device system including at least a first implantable medical device and a second implantable medical device is configured to establish by a control module of the first implantable medical device whether the second implantable medical device is present in a patient and self-configure an operating mode of the control module in response to establishing that the second implantable medical device is present.
Abstract:
A relatively compact implantable medical device includes a fixation member formed by a plurality of fingers mounted around a perimeter of a distal end of a housing of the device; each finger is elastically deformable from a relaxed condition to an extended condition, to accommodate delivery of the device to a target implant site, and from the relaxed condition to a compressed condition, to accommodate wedging of the fingers between opposing tissue surfaces at the target implant site, wherein the compressed fingers hold a cardiac pacing electrode of the device in intimate tissue contact for the delivery of pacing stimulation to the site. Each fixation finger is preferably configured to prevent penetration thereof within the tissue when the fingers are compressed and wedged between the opposing tissue surfaces. The pacing electrode may be mounted on a pacing extension, which extends distally from the distal end of the device housing.
Abstract:
An example fixation component for an implantable medical device (IMD) includes a base and a plurality of tines configured be deployed with a target deployment stiffness to engage tissue a target implant site while maintaining a target deflection stiffness after deployment. The base defines a longitudinal axis of the fixation component and is fixedly attached near the distal end of the IMD. Each tine is spaced apart from one another around a perimeter of the distal end of the IMD and extend from the base. A shape of each tine is selected to control each of the target deployment stiffness and target deflection stiffness.
Abstract:
A bore plug for an implantable medical device. The bore plug includes an elongate body having a proximal portion, a distal portion, and defining a major longitudinal axis therethrough, the distal portion being sized and configured to be received within a bore of the implantable medical device. The distal portion includes a lubricating element configured to lubricate the bore when the distal portion is at least one from the group consisting of inserted within and withdrawn from the bore.
Abstract:
In some examples, an implantable medical device (IMD) includes a housing defined in part by a longitudinal axis, a header at a distal end of the housing, the header defining a header plane, the header plane disposed at an angle relative to a reference plane, where the reference plane is perpendicular to the longitudinal axis, a fixation mechanism extending from the header, the fixation mechanism configured to be advanced into tissue of a heart of a patient to fix at least a portion of the IMD to the heart, one or more electrodes that extend from the header and are configured to engage with the septum, and circuitry within the housing, wherein the circuitry is configured to deliver cardiac pacing to the heart via the one or more electrodes.
Abstract:
A device and method are described for transmitting tissue conductance communication (TCC) signals. A device may be is configured to establish a transmission window by transmitting a TCC test signal at multiple time points over a transmission test period to a receiving device and detect at least one response to the transmitted TCC test signals performed by the receiving device. The IMD is configured to establish the transmission window based on the at least one detected response so that the transmission window is correlated to a time of relative increased transimpedance between a transmitting electrode vector and receiving electrode vector during the transmission test period.
Abstract:
An example fixation component for an implantable medical device (IMD) includes a base and a plurality of tines configured be deployed with a target deployment stiffness to engage tissue a target implant site while maintaining a target deflection stiffness after deployment. The base defines a longitudinal axis of the fixation component and is fixedly attached near the distal end of the IMD. Each tine is spaced apart from one another around a perimeter of the distal end of the IMD and extend from the base. A shape of each tine is selected to control each of the target deployment stiffness and target deflection stiffness.
Abstract:
Methods and systems of making a medical electrical lead type having a set of tines. A system for implantation of a lead medical electrical lead in contact with heart tissue, comprises an elongated lead body; a set of curved tines mounted to and extending from a distal end of the lead body, the tines having a length (dD) and an effective cross sectional area, and a delivery catheter. The delivery catheter encloses the lead body and has a distal capsule portion enclosing the tines. The tines exerting a spring force against the capsule and provide a stored potential energy. The delivery catheter has an elastic, not stiff and low column strength ejection means for advancing the lead and tines distally from the capsule and fixating the tines within the heart tissue, the controllable and the stored potential energy of the tines together provide a deployment energy. The tines when so fixated in the tissue provide a fixation energy. The deployment energy and the fixation energy of the tines are equivalent.
Abstract:
Method and systems of determining adequacy of fixation of a medical lead type having a fixation helix are disclosed. The lead of the medical lead type is placed at a desired location within a patient's body and the fixation helix is screwed into tissue at that location. One or more parameters, associated with the lead, are measured at the location. Based upon the measured one or more parameters, determining a number of turns that the helix is embedded into the tissue at the location.