Abstract:
A driver circuit for a power device of a power driving stage is capable of providing slew rate control. The driver circuit includes the following elements: a charging source of current, a discharging source of current, a first switch, a second switch, a conductive device, a capacitive element, an amplifier, and the power device. Both the first and second switches receive a control signal. The elements of the driver circuit are configured such that the conductive device will conduct only when the following two conditions are met: the control signal is a certain logic level and the voltage generated by the amplifier is larger than a reference voltage. When the control signal transitions from a first to a second logic state, a charging current is delivered to the capacitive element, an output voltage of the driver circuit increased to the reference voltage, and a voltage on a control terminal of the power device also increases to a charge pump voltage level. When the control signal transitions from the second to the first logic state, the conductive device conducts as long as the output voltage generated by the power device is larger than the reference voltage and the discharging source of current operates to quickly discharge the capacitive element so that the voltage at the node at the input terminal of the amplifier is quickly reduced until it approximates the reference voltage.
Abstract:
The present invention relates to a signal driver circuit for driving a liquid crystal display panel. The signal driver circuit provides level shifting within the circuit to lower the power consumption of a liquid crystal display module while still providing a wide analog voltage range to the liquid crystal display elements. The decoding circuits utilize a strand of abutting decode input transistors which are connected in series. Further to reduce the physical size of the decoding circuits, multiple decode circuits may share circuitry that decodes the most significant bits of a data word. A cell layout is utilized such that the most significant bits data are bused into the cell through metal lines and the least significant bits are bused in polysilicon that also operates as the gate of the decode input transistors. Moreover, the decode cell input transistors may all be of the same conductivity type.
Abstract:
A self-calibrated analog-to-digital converter with a corrected output includes an analog modulator (18) for receiving an analog input voltage and outputting a pulse train having a value proportional to the analog input voltage. The pulse train is filtered by a digital filter (20) which has the output thereof input to a calibration module (24). The calibration module (24) is controlled by a calibration control circuit (28) and is operable to correct the output to account for offset and gain errors. Prestored calibration parameters in a register (30) are utilized for this compensation. In a self-calibration mode, the control circuit (28) is operable to control a calibration multiplexer (12) to select a zero-scale input voltage on a terminal (16) and a full-scale reference voltage on a terminal (14) for input to the modulator (18). The multiplexer (12) is controlled to selcet the zero-scale reference to calculate an offset value for storage in the register (30) and then subsequently select the full-scale reference to calculate a scale factor for storage in the register (30 ). The self-calibration mode utilizes a settling counter (36) to insure that the output of the filter (20) has settled prior to making any calculations.