摘要:
Disclosed examples include a segmented DAC circuit, including an R-2R resistor DAC to convert a first subword to a first analog output signal, an interpolation DAC to offset the first analog output signal based on an N-bit digital interpolation code signal to provide the analog output signal, and a Sigma Delta modulator to modulate a modulator code to provide the N-bit digital interpolation code signal that represents a value of second and third subwords.
摘要:
A continuous-time delta-sigma modulator for analog-to-digital conversion includes a pair of pseudo-differential signal paths including a pair of pseudo-differential signal paths including current-controlled ring oscillators as the load of open-loop common-source amplifiers that are driven by an analog input signal. The signal path produces digital values by sampling the open-loop current-controlled ring oscillators. A calibration circuit measures nonlinear distortion coefficients in a replica of the signal path. A nonlinearity corrector corrects digital values based upon the nonlinear distortion coefficients.
摘要:
An integrated circuit includes a component calculator configured to compute at least one component value of a highly programmable analog-to-digital converter (ADC) from at least one application parameter, and a mapping module configured to map the component value to a corresponding register setting of the ADC based on at least one process parameter, wherein the integrated circuit produces digital control signals capable of programming the ADC. In a specific embodiment, the component calculator uses an algebraic function of a normalized representation of the application parameter to approximately evaluate at least one normalized ADC coefficient. The component value is further calculated by decimalizing the normalized ADC coefficient. In another specific embodiment, the component calculator uses an algebraic function of the application parameter to calculate the component value. In some embodiments, the integrated circuit further includes a scaling module configured to scale the component value based on scaling parameters.
摘要:
Provided are, among other things, systems, methods and techniques for converting a continuous-time, continuously variable signal into a sampled and quantized signal. According to one implementation, an apparatus includes multiple processing branches, each including: a continuous-time quantization-noise-shaping circuit, a sampling/quantization circuit, and a digital bandpass filter. A combining circuit then combines signals at the processing branch outputs into a final output signal. The continuous-time quantization-noise-shaping circuits include adjustable circuit components for changing their quantization-noise frequency-response minimum, and the digital bandpass filters include adjustable parameters for changing their frequency passbands.
摘要:
A Sigma-Delta modulator and an analog-to-digital converter. The Sigma-Delta modulator comprises a quantizer, a correction module and an RC integrator. The correction module comprises a predetermined resistance through which a correction level is generated. The correction module is used to compare the correction level with a predetermined reference voltage by using a comparator in the quantizer, so as to generate a digital correction signal, based on which the resistance in a resistance correction array in the RC integrator is corrected. The predetermined resistance is of the same type as the resistance in the resistance correction array in the RC integrator. The Sigma-Delta modulator and the analog-to-digital converter can correct the resistance deviation in the RC integrator.
摘要:
A continuous-time delta-sigma modulator for analog-to-digital conversion includes a pair of pseudo-differential signal paths including a pair of pseudo-differential signal paths including current-controlled ring oscillators as the load of open-loop common-source amplifiers that are driven by an analog input signal. The signal path produces digital values by sampling the open-loop current-controlled ring oscillators. A calibration circuit measures nonlinear distortion coefficients in a replica of the signal path. A nonlinearity corrector corrects digital values based upon the nonlinear distortion coefficients
摘要:
Traditionally, pipelined continuous-time (CT) sigma-delta modulators (SDM) have been difficult to build due at least in part to the difficulties in calibrating the pipeline. Here, however, a pipelined CT SDM is provided that has an architecture that is conducing to being calibrated. Namely, the system includes a digital filter and other features that can be adjusted to account for input imbalance errors and well as quantization leakage noise.
摘要:
An A/D converter and a semiconductor device simple in configuration are provided which can keep a constant noise shaping characteristic without depending on manufacturing variations or a temperature change. A semiconductor device includes a delta-sigma modulator, an input changeover switch, and a control logic circuit. The delta-sigma modulator can change a time constant of an internal circuit according to a control signal. The input changeover switch selectively inputs any one of an input amplitude voltage and a reference voltage to the delta-sigma modulator. A control logic circuit is coupled to an output of the delta-sigma modulator, and generates the control signal.
摘要:
A circuit and method for compensating sigma-delta modulators in A/D and D/A converters is disclosed. Circuits according to the invention use a low-resolution Sigma-Delta encoded version of the signal to inexpensively encode quadratic and cubic compensation terms. These circuits can encode quadratic and cubic compensation signals with acceptably low quantization noise without requiring the use of expensive multi-bit multipliers to compute the square or cube of the signal. The method includes providing a binary word Q or a binary word C (or both) representing the desired amount of quadratic or cubic compensation to apply. Because the encoded quadratic and cubic signals have only one or a few bits, they can be multiplied by Q and C without the use of expensive multi-bit multipliers and applied to the modulator input or output to provide a compensated result.
摘要:
A method of self-calibrating a modulator includes at least one integrator likely to incur a phase error may include reading a pulse response of the modulator, calculating a phase error parameter of the at least one integrator, and calibrating the phase error parameter. In addition, the calibration may provide a count of pulse response samples above suitable threshold values, as well as a change in the value of a capacitor associated with the integrator based upon the sample count.