摘要:
The present invention discloses a method and apparatus for singulating inhomogeneous materials. The pieces of materials are first deposited onto a cleat conveyor which is set at an incline so that the pieces of material not residing on a cleat will fall backwards. The cleat conveyor deposits the materials onto a cross conveyor which has a cross conveyor path perpendicular to the cleat conveyor path. There is a slight drop and slide between the cleat conveyor and cross conveyor. The cross conveyor then deposits materials onto a diverter system having a diverter conveyor moving material along a path. The path is interrupted by diverters extending at obtuse angles across the path of the materials. The diverter system works the materials into a single file order and performs some spacing. The diverter conveyor then deposits the materials onto an acceleration conveyor having a velocity greater then the diverter conveyor. The acceleration conveyor then transports the materials to a sensor conveyor while expanding the distance between the materials. The sensor conveyor then transports the materials through a sensor. The combination of changes in direction and velocity singulate the material and space the materials apart for sensing and separation.
摘要:
Selective non-magentic detection of non-ferrous metallic particles in a mixture of same with ferrous metallic particles and non-metallic particles derived from homogenized and magnetically treated municipal or like waste by a plurality of electronic detectors and separation of a non-ferrous metallic concentrate from said mixture.
摘要:
Separation of metallic particles from non-metallic particles of processed solid waste such as garbage to obtain a metallic concentrate, including use of such separation as the mid-step in a process which begins with homogenizing and magnetically treating components of the waste and ends with isolating the metallic concentrate as a high-purity metal fraction, for example, high-purity aluminum.
摘要:
Methods and systems are provided for controlling an automatic separator apparatus of a Materials Recovery Facility. An input waste material stream includes a mixture of first and second materials. The method includes a step of passing the input waste material stream through an adjustable separator having at least one adjustable parameter, and separating the input waste material stream into a first output stream containing the majority of the first material and some contaminant second material, and a second output stream containing the majority of the second material and some contaminant first material. The adjustable parameter is adjusted. The method includes monitoring the amount of contaminant second material in the first output stream, and the amount of contaminant first material in the second output stream, both before and after the adjustment of the adjustable parameter, and generating a signal indicative of whether the combined amount of contaminant material has decreased. The adjustable parameter is further adjusted responsive to the signal, in a direction indicated by the signal as being favorable to decreasing the combined amount of contaminant material in the first and second output streams.
摘要:
A paper sorting system allows the high speed determination of color, glossiness and the presence of printed matter for individual sheets of paper in a stream of waste paper. Sorting criteria may be selected from a plurality of predefined options to sort the paper stream.
摘要:
A method is provided for sorting white paper from a stream of paper wherein the concentration of white paper is less than the concentration of non-white paper. The method includes identifying the white paper by detecting the presence of an optical characteristic of the white paper as the stream of paper is passed by a sensor. Then the white paper is ejected from the stream of paper by controlling one or more actuators directed against the white paper, and thereby separating the white paper from the non-white paper. The method is particularly applicable to the sorting of white paper during curbside recycling.
摘要:
Apparatus and methods are provided for sensing the presence of bright white paper on a conveyor of a paper sorting system. The conveyor is constantly illuminated with ultraviolet light. When bright white paper is present in the inspection zone of the conveyor, it will re-radiate fluorescent light energy as a result of the ultraviolet light. Periodically, the inspection zone of the conveyor is illuminated with a second light source in the visible light spectrum. Light is collected from the inspection zone of the conveyor, including reflected light from the secondary source and including emitted fluorescent light energy as a result of the ultraviolet light falling on bright white paper. Periodically a microprocessor associated with the sensor senses reflected light from the second source to determine whether any object if present on the conveyor. The microprocessor then senses the level of fluorescent light energy being emitted from any object on the conveyor. The system determines first whether any object is present on the conveyor, as a result of the reflected secondary light, and then determines whether that object is bright white paper depending upon the measured level of emitted fluorescent light energy. Based upon these determinations, the stream of waste paper on the conveyor can be sorted into two fractions, one of which is the bright white paper.
摘要:
Apparatus and methods are provided for sensing the presence of bright white paper on a conveyor of a paper sorting system. The conveyor is constantly illuminated with ultraviolet light. When bright white paper is present in the inspection zone of the conveyor, it will re-radiate fluorescent light energy as a result of the ultraviolet light. Periodically, the inspection zone of the conveyor is illuminated with a second light source in the visible light spectrum. Light is collected from the inspection zone of the conveyor, including reflected light from the secondary source and including emitted fluorescent light energy as a result of the ultraviolet light falling on bright white paper. Periodically a microprocessor associated with the sensor senses reflected light from the second source to determine whether any object if present on the conveyor. The microprocessor then senses the level of fluorescent light energy being emitted from any object on the conveyor. The system determines first whether any object is present on the conveyor, as a result of the reflected secondary light, and then determines whether that object is bright white paper depending upon the measured level of emitted fluorescent light energy. Based upon these determinations, the stream of waste paper on the conveyor can be sorted into two fractions, one of which is the bright white paper.
摘要:
Solid waste incinerator fuel is preclassified by passing it through a hollow rotating cylindrical drum which has two sets of extensions from the wall going lengthwise along the length of the drum, the first set toward one end and the second toward the other, the second set being shorter or smaller-sized than the first and the first preferably having rodlike projections which may have at least partly knifelike or bladelike ends or edges at the axial or inner ends thereof. The first set of extensions homogenizes the incoming waste by lifting, dropping, churning, and ripping it as well as fluffing it. The second set of extensions, preferably angled, lifts smaller sized heavier, non-combustible particles to the upper part of the drum from which they are removed at the exit end. The lighter material, mostly combustibles such as paper, textiles and wood, for example, is discharged toward the bottom of the exit end of the drum. When in operation the drum is preferably angled or tilted somewhat downward from entrance to exit end to facilitate movement of the material undergoing rotational treatment through the drum.
摘要:
Solid waste incinerator fuel is preclassified by passing it through a hollow rotating cylindrical drum which has magnetic extensions called flights protruding from the inside of the drum wall along its length. The drum may also have a first set of non-magnetic flights toward one end protruding farther from the wall toward the center or axis of the drum then a second non-magnetic portion on the other side of the magnetic flights along the length of the drum. The magnetic flights attract particles and material subject to magnetic attraction. The ends of the first set of non-magnetic flights toward the middle of the length of the drum are preferably shaped or rounded somewhat lengthwise. A scraper assembly preferably having two material removal channels or chutes in addition to a scraper blade, may be arranged to extend into an exit end of the drum. The scraper blade removes magnetic or iron particles from the magnetic flights as the drum rotates. These are carried out of the drum via a first of the two channels, with the non-magnetic noncombustibles being carried out via a second.