摘要:
A gas sensor control apparatus is provided which controls an operation of a gas sensor made up of a solid electrolyte body and a pair of electrodes to output a signal indicating the concentration of a given gas component contained in gas. The gas sensor control apparatus includes a constant current circuit that is connected electrically to one of the electrodes of the gas sensor and supplies a constant current thereto and a controller. The controller supplies a constant current to the gas sensor so that it flows from one of the electrodes to the other in a selected direction, thereby changing a response time the gas sensor takes to react to a change in concentration of the gas component. This results in an increased accuracy, for example, in controlling an air-fuel ratio of a mixture to an internal combustion engine in an engine control system.
摘要:
In view of a difference in detectability of an air-fuel ratio sensor with respect to each cylinder, a first exhaust system model and a second exhaust system model are defined. The first exhaust system model outputs an air-fuel ratio at the confluent portion based on an air-fuel ratio in a cylinder. The second exhaust system model outputs a detection value of the exhaust gas sensor based on the air-fuel ratio at the confluent portion. A confluent-portion-air-fuel ratio estimating portion designed based on the second exhaust system model estimates the air-fuel ratio at the confluent portion. A combust-air-fuel ratio estimating portion designed based on the first exhaust system model estimates a combust-air-fuel ratio in each cylinder.
摘要:
The image merge device includes a common area determination unit configured to determine a common area between a first image and a second image; a correlation calculation unit configured to calculate a correlation level indicating a degree of a gap between the first image near a boundary of the first image and the second image and the second image near the boundary when the first image and the second image are aligned using the common area; and a superimposed area determination unit configured to determine a superimposed area in which the first and second images are superimposed near the boundary based on the correlation level calculated by the correlation calculation unit.
摘要:
A photographing device includes a motion amount calculation unit that calculates a motion amount of an image in the successive images, an image selection unit that selects an image to be processed based on the motion amount, and an image combination unit that combines overlapped parts by using a plurality of partially overlapped images selected by the image selection unit.
摘要:
A plant model expressing an object to be controlled by a discrete mathematical model is used. Parameters of the plant model are identified in such a way as to bring an identification error, which is an error between a plant model output of an output when an input to an object to be controlled is applied to the plant model and an actual output of the object to be controlled, close to zero. By discretizing the plant model in the form of including information of part of time delay of the object to be controlled in model parameters, the information of part of time delay included in the discrete model parameters can be estimated and time delay is estimated on the basis of a change in estimated values in such a way as to be brought close to actual time delay of the object to be controlled.
摘要:
The movement of an image component is determined using the plot information, such as the position, size of the image component, etc., at each time. The complex movement of each image component can be easily generated by providing a plurality of plot information generating units for each image component and combining a plurality of pieces of plot information generated by the plot information generating units when an image is reproduced.
摘要:
Disclosed is a method for injecting a plurality of spacecrafts into different circum-earth or interplanetary orbits individually in a single launch. A plurality of spacecrafts coupled to an assist module are injected into an interplanetary orbit having a periodicity synchronous with the earth's revolution period. Then, in a maneuver for allowing the assist module to re-counter with and pass near to the earth Earth swing-by), the assist module appropriately performs an orbital change maneuver and a separation maneuver for each of the spacecrafts in a sequential order. Through these maneuvers, a closest-approach point to the earth is changed for each of the spacecrafts so as to drastically change a subsequent orbital element for each of the spacecrafts. The assist module takes a sufficient time to determine a target orbit for each of the spacecrafts with a high degree of accuracy until a half month to several days before a closest-approach time in the Earth swing-by. Based on the determined orbit, the assist module makes an orbit correction of about several m/sec in a sequential order, and then separates the spacecrafts therefrom in a sequential order. In this process, an inertia navigation is performed based on an accelerometer mounted in the assist module and information about attitude.
摘要:
A plant model expressing an object to be controlled by a discrete mathematical model is used. Parameters of the plant model are identified in such a way as to bring an identification error, which is an error between a plant model output of an output when an input to an object to be controlled is applied to the plant model and an actual output of the object to be controlled, close to zero. By discretizing the plant model in the form of including information of part of time delay of the object to be controlled in model parameters, the information of part of time delay included in the discrete model parameters can be estimated and time delay is estimated on the basis of a change in estimated values in such a way as to be brought close to actual time delay of the object to be controlled.
摘要:
The movement of an image component is determined using the plot information, such as the position, size of the image component, etc., at each time. The complex movement of each image component can be easily generated by providing a plurality of plot information generating units for each image component and combining a plurality of pieces of plot information generated by the plot information generating units when an image is reproduced.