Abstract:
A non-reciprocal circuit element includes a ferrite to which a direct current magnetic field is applied by a permanent magnet, and first and second center electrodes arranged on the ferrite so as to intersect with and be insulated from each other. One end of the first center electrode is connected to a first port and the other is connected to a second port. One end of the second center electrode is connected to the second port and the other is connected to a ground port. A first capacitor and a resistor connected in parallel are connected between the first and second ports and a second capacitor is connected between the second and ground ports. An input/output terminal of at least one filter is connected between the first or second port and the resistor and the ground terminal thereof is connected to the second or first port.
Abstract:
A transmission line includes a ground electrode, a first line, and a second line, and transfers a radio frequency signal. The first line is disposed to face the ground electrode and constitutes a microstrip line together with the ground electrode. The second line faces the first line and is disposed along the first line. The second line constitutes a resonator for the first line. The first line is disposed between the second line and the ground electrode.
Abstract:
An antenna module includes a dielectric substrate, a ground electrode in the dielectric substrate, planar radiating elements, and a peripheral electrode. One radiating element faces the ground electrode. Another radiating element is between the one radiating element and the ground electrode. The peripheral electrode is in a layer of the dielectric substrate between the ground electrode and the other radiating element and electrically connects to the ground electrode. The other radiating element emits a radio wave in a frequency band lower than a frequency band of a radio wave emitted by the one radiating element. The peripheral electrode includes multiple planar electrodes stacked in a first direction in which the one radiating element faces the ground electrode. One planar electrode is in a layer between another planar electrode and the ground electrode. The size of the other planar electrode is less than the size of the one planar electrode.
Abstract:
An antenna module includes feed elements each having a flat plate shape and a ground electrode arranged opposite the feed elements. The feed element radiates a radio wave of a first frequency band. The feed element radiates a radio wave of a second frequency band that is higher than the first frequency band. In a plan view of the feed element, the distance from the center of the feed element to an end portion of the ground electrode in a first direction is shorter than or equal to ½ of a free space wavelength of a radio wave radiated from the feed element. A feed point of the feed element is arranged at a location shifted in a second direction from the center of the feed element, and the second direction is different from the first direction.
Abstract:
An antenna device is formed by arranging a plurality of radiation elements each radiating a circularly polarized wave in a matrix of three rows and ten columns. The plurality of radiation elements include radiation elements of four types having a positional relationship rotationally symmetric with each other. The plurality of radiation elements are included in a first element group in which radiation elements are arranged in a matrix of three rows and three columns in one end portion side and a second element group in which radiation elements are arranged in a matrix of three rows and three columns in the other end portion side. A first center element disposed at a center of the first element group is an element of a type obtained by rotating a second center element disposed at a center of the second element group by 180 degrees.
Abstract:
An antenna module including a dielectric substrate formed by stacking a plurality of dielectric layers, a radiating element formed on or in the dielectric substrate, a ground electrode facing the radiating element, and peripheral electrodes that are formed in a plurality of layers between the radiating element and the ground electrode at an outer periphery of the dielectric substrate.
Abstract:
An antenna module includes a dielectric substrate and a radiation element disposed on the dielectric substrate. The dielectric substrate includes a flat portion (131) and a flat portion (130) having mutually different normal directions, and a bent portion connecting the flat portion (131) and the flat portion (130) to each other. The flat portion (131) has a protruding portion partially protruding in a direction toward the flat portion (130) along the flat portion (131) from a boundary portion between the bent portion and the flat portion (131). The flat portion (131) and the bent portion are connected to each other at a position where the protruding portion is not provided in the flat portion (131). At least a part of the radiation element is disposed on the protruding portion.
Abstract:
An antenna module includes a dielectric substrate and a radiation element disposed on the dielectric substrate. The dielectric substrate includes a flat portion (131) and a flat portion (130) having mutually different normal directions, and a bent portion connecting the flat portion (131) and the flat portion (130) to each other. The flat portion (131) has a protruding portion partially protruding in a direction toward the flat portion (130) along the flat portion (131) from a boundary portion between the bent portion and the flat portion (131). The flat portion (131) and the bent portion are connected to each other at a position where the protruding portion is not provided in the flat portion (131). At least a part of the radiation element is disposed on the protruding portion.
Abstract:
An antenna module includes a dielectric substrate, a radiation electrode formed on the front face of the dielectric substrate, an RFIC and a ground electrode formed on the rear face of the dielectric substrate, a ground line arranged in the dielectric substrate, and a power supply line including a power supply line portion arranged in parallel to a main surface of the dielectric substrate. The ground electrode is arranged between the power supply line portion and the RFIC. The ground line is arranged between the power supply line portion and the radiation electrode. The ground electrode includes the radiation electrode and part of the power supply line portion in a plan view. The ground line includes part of the power supply line portion in the plan view. The area in which the ground line is formed is smaller than the area in which ground electrode is formed.
Abstract:
An antenna module (1) includes an antenna array (100) that includes a plurality of radiation conductors (11) arranged at regular intervals in or on a dielectric substrate (14) and an RFIC (20) that is provided in or on the dielectric substrate (14) and that performs signal processing on a transmission signal transmitted by the antenna array (100) or a reception signal received by the patch antenna array (100). Each of the plurality of radiation conductors (11) has a transmission feeding point from which the transmission signal is transmitted to the RFIC (20) and a reception feeding point at which the reception signal is received from the RFIC (20).