GROUND TRUTH DATA GENERATION FOR DEEP NEURAL NETWORK PERCEPTION IN AUTONOMOUS DRIVING APPLICATIONS

    公开(公告)号:US20220277193A1

    公开(公告)日:2022-09-01

    申请号:US17187350

    申请日:2021-02-26

    Abstract: An annotation pipeline may be used to produce 2D and/or 3D ground truth data for deep neural networks, such as autonomous or semi-autonomous vehicle perception networks. Initially, sensor data may be captured with different types of sensors and synchronized to align frames of sensor data that represent a similar world state. The aligned frames may be sampled and packaged into a sequence of annotation scenes to be annotated. An annotation project may be decomposed into modular tasks and encoded into a labeling tool, which assigns tasks to labelers and arranges the order of inputs using a wizard that steps through the tasks. During the tasks, each type of sensor data in an annotation scene may be simultaneously presented, and information may be projected across sensor modalities to provide useful contextual information. After all annotation tasks have been completed, the resulting ground truth data may be exported in any suitable format.

    OBJECT DETECTION AND CLASSIFICATION USING LIDAR RANGE IMAGES FOR AUTONOMOUS MACHINE APPLICATIONS

    公开(公告)号:US20210063578A1

    公开(公告)日:2021-03-04

    申请号:US17005788

    申请日:2020-08-28

    Abstract: In various examples, a deep neural network (DNN) may be used to detect and classify animate objects and/or parts of an environment. The DNN may be trained using camera-to-LiDAR cross injection to generate reliable ground truth data for LiDAR range images. For example, annotations generated in the image domain may be propagated to the LiDAR domain to increase the accuracy of the ground truth data in the LiDAR domain—e.g., without requiring manual annotation in the LiDAR domain. Once trained, the DNN may output instance segmentation masks, class segmentation masks, and/or bounding shape proposals corresponding to two-dimensional (2D) LiDAR range images, and the outputs may be fused together to project the outputs into three-dimensional (3D) LiDAR point clouds. This 2D and/or 3D information output by the DNN may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.

Patent Agency Ranking