-
公开(公告)号:US20210156963A1
公开(公告)日:2021-05-27
申请号:US16836618
申请日:2020-03-31
Applicant: NVIDIA Corporation
Inventor: Alexander Popov , Nikolai Smolyanskiy , Ryan Oldja , Shane Murray , Tilman Wekel , David Nister , Joachim Pehserl , Ruchi Bhargava , Sangmin Oh
Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.
-
2.
公开(公告)号:US20240061075A1
公开(公告)日:2024-02-22
申请号:US18493452
申请日:2023-10-24
Applicant: NVIDIA Corporation
Inventor: Alexander POPOV , Nikolai SMOLYANSKIY , Ryan OLDJA , Shane Murray , Tilman WEKEL , David NISTER , Joachim PEHSERL , Ruchi BHARGAVA , Sangmin OH
IPC: G01S7/295 , G06T7/246 , G06T7/73 , G01S7/41 , G01S13/931 , G06N3/08 , G06V10/764 , G06V10/82 , G06V20/58 , G06V20/64
CPC classification number: G01S7/2955 , G06T7/246 , G06T7/73 , G01S7/414 , G01S7/417 , G01S13/931 , G06N3/08 , G06V10/764 , G06V10/82 , G06V20/58 , G06V20/64 , G06T2207/10044 , G06T2207/20084 , G06T2207/30261
Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space, in both highway and urban scenarios. RADAR detections may be accumulated, ego-motion-compensated, orthographically projected, and fed into a neural network(s). The neural network(s) may include a common trunk with a feature extractor and several heads that predict different outputs such as a class confidence head that predicts a confidence map and an instance regression head that predicts object instance data for detected objects. The outputs may be decoded, filtered, and/or clustered to form bounding shapes identifying the location, size, and/or orientation of detected object instances. The detected object instances may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US11885907B2
公开(公告)日:2024-01-30
申请号:US16836583
申请日:2020-03-31
Applicant: NVIDIA Corporation
Inventor: Alexander Popov , Nikolai Smolyanskiy , Ryan Oldja , Shane Murray , Tilman Wekel , David Nister , Joachim Pehserl , Ruchi Bhargava , Sangmin Oh
IPC: G01S7/295 , G06T7/246 , G06T7/73 , G01S7/41 , G01S13/931 , G06N3/08 , G06V10/764 , G06V10/82 , G06V20/58 , G06V20/64
CPC classification number: G01S7/2955 , G01S7/414 , G01S7/417 , G01S13/931 , G06N3/08 , G06T7/246 , G06T7/73 , G06V10/764 , G06V10/82 , G06V20/58 , G06V20/64 , G06T2207/10044 , G06T2207/20084 , G06T2207/30261
Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space, in both highway and urban scenarios. RADAR detections may be accumulated, ego-motion-compensated, orthographically projected, and fed into a neural network(s). The neural network(s) may include a common trunk with a feature extractor and several heads that predict different outputs such as a class confidence head that predicts a confidence map and an instance regression head that predicts object instance data for detected objects. The outputs may be decoded, filtered, and/or clustered to form bounding shapes identifying the location, size, and/or orientation of detected object instances. The detected object instances may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US20230145218A1
公开(公告)日:2023-05-11
申请号:US17454338
申请日:2021-11-10
Applicant: NVIDIA Corporation
Inventor: Shane Murray , Sangmin Oh
IPC: B60W60/00 , G01S13/931 , G06N3/08
CPC classification number: B60W60/0015 , G01S13/931 , G06N3/08 , B60W2554/801 , B60W2554/802 , B60W2554/402 , B60W2554/20 , B60W2556/60 , B60W2420/52
Abstract: In various examples, systems are described herein that may evaluate one or more radar detections against a set of filter criteria, the one or more radar detections generated using at least one sensor of a vehicle. The system may then accumulate, based at least on the evaluating, the one or more radar detections to one or energy levels that correspond to one or more locations of the one or more radar detections in a zone positioned relative to the vehicle. The system may then determine one or more safety statuses associated with the zone based at least on one or more magnitudes of the one or more energy levels. The system may transmit data, or take some other action, that causes control of the vehicle based at least on the one or more safety statuses.
-
公开(公告)号:US20230049567A1
公开(公告)日:2023-02-16
申请号:US17976581
申请日:2022-10-28
Applicant: NVIDIA Corporation
Inventor: Alexander Popov , Nikolai Smolyanskiy , Ryan Oldja , Shane Murray , Tilman Wekel , David Nister , Joachim Pehserl , Ruchi Bhargava , Sangmin Oh
Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.
-
公开(公告)号:US12050285B2
公开(公告)日:2024-07-30
申请号:US17976581
申请日:2022-10-28
Applicant: NVIDIA Corporation
Inventor: Alexander Popov , Nikolai Smolyanskiy , Ryan Oldja , Shane Murray , Tilman Wekel , David Nister , Joachim Pehserl , Ruchi Bhargava , Sangmin Oh
CPC classification number: G01S7/417 , G01S13/865 , G01S13/89 , G06N3/04 , G06N3/08
Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.
-
公开(公告)号:US11531088B2
公开(公告)日:2022-12-20
申请号:US16836618
申请日:2020-03-31
Applicant: NVIDIA Corporation
Inventor: Alexander Popov , Nikolai Smolyanskiy , Ryan Oldja , Shane Murray , Tilman Wekel , David Nister , Joachim Pehserl , Ruchi Bhargava , Sangmin Oh
Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.
-
公开(公告)号:US20210156960A1
公开(公告)日:2021-05-27
申请号:US16836583
申请日:2020-03-31
Applicant: NVIDIA Corporation
Inventor: Alexander Popov , Nikolai Smolyanskiy , Ryan Oldja , Shane Murray , Tilman Wekel , David Nister , Joachim Pehserl , Ruchi Bhargava , Sangmin Oh
IPC: G01S7/41 , G06N3/08 , G06T7/73 , G06T7/246 , G01S13/931
Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space, in both highway and urban scenarios. RADAR detections may be accumulated, ego-motion-compensated, orthographically projected, and fed into a neural network(s). The neural network(s) may include a common trunk with a feature extractor and several heads that predict different outputs such as a class confidence head that predicts a confidence map and an instance regression head that predicts object instance data for detected objects. The outputs may be decoded, filtered, and/or clustered to form bounding shapes identifying the location, size, and/or orientation of detected object instances. The detected object instances may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US11960026B2
公开(公告)日:2024-04-16
申请号:US17976581
申请日:2022-10-28
Applicant: NVIDIA Corporation
Inventor: Alexander Popov , Nikolai Smolyanskiy , Ryan Oldja , Shane Murray , Tilman Wekel , David Nister , Joachim Pehserl , Ruchi Bhargava , Sangmin Oh
CPC classification number: G01S7/417 , G01S13/865 , G01S13/89 , G06N3/04 , G06N3/08
Abstract: In various examples, a deep neural network(s) (e.g., a convolutional neural network) may be trained to detect moving and stationary obstacles from RADAR data of a three dimensional (3D) space. In some embodiments, ground truth training data for the neural network(s) may be generated from LIDAR data. More specifically, a scene may be observed with RADAR and LIDAR sensors to collect RADAR data and LIDAR data for a particular time slice. The RADAR data may be used for input training data, and the LIDAR data associated with the same or closest time slice as the RADAR data may be annotated with ground truth labels identifying objects to be detected. The LIDAR labels may be propagated to the RADAR data, and LIDAR labels containing less than some threshold number of RADAR detections may be omitted. The (remaining) LIDAR labels may be used to generate ground truth data.
-
公开(公告)号:US20230236314A1
公开(公告)日:2023-07-27
申请号:US17585141
申请日:2022-01-26
Applicant: NVIDIA Corporation
Inventor: Feng Jin , Nitin Bharadwaj , Shane Murray , James Hockridge Critchley , Sangmin Oh
IPC: G01S13/931 , G01S13/58 , G01S7/35
CPC classification number: G01S13/931 , G01S13/584 , G01S7/356
Abstract: In various examples, methods and systems are provided for sampling and transmitting the most useful information from a radar signal representing a scene while staying within the computational and storage confines of a standard automotive radar sensor and the bandwidth constraints of a standard communication link between a radar sensor and processing unit. Disclosed approaches may select a patch of frequency bins that correspond to radar signals based at least on proximities of the frequency bins to one or more frequency bins corresponding to at least one peak and/or detection point in the radar signals. Data representing samples corresponding to the patch of frequency bins may be transmitted to the processing unit and applied to one or more machine learning models in order to accurately classify, identify, and/or track objects.
-
-
-
-
-
-
-
-
-