Abstract:
The invention relates to an organic light-emitting component (100), comprising a functional layer stack (9) between two electrodes (1, 8), wherein the functional layer stack (9) has at least two organic light-emitting layers (2, 7) and at least one charge carrier generation zone (3), which is arranged between the two organic light-emitting layers (2, 7), wherein the charge carrier generation zone (3) comprises an electron-conducting organic layer (31) and a hole-conducting organic layer (32), between which an intermediate region (4) is arranged, wherein the intermediate region (4) comprises at least one organic intermediate layer (6) which has a first charge carrier transport mechanism and an inorganic intermediate layer (5) which has a second charge carrier transport mechanism, wherein the inorganic intermediate layer (5) is arranged between the organic intermediate layer (6) and the electron-conducting organic layer (31), and wherein the first charge carrier transport mechanism is at least partially different to the second charge carrier transport mechanism.
Abstract:
An optoelectronic component is provided. The optoelectronic component includes an electromagnetic radiation source including an optically active region designed for emitting a first electromagnetic radiation, and a converter structure, which includes at least one converter material and is arranged in the beam path of the first electromagnetic radiation. The at least one converter material is designed to convert at least one portion of the first electromagnetic radiation into at least one second electromagnetic radiation. The at least one second electromagnetic radiation has at least one different wavelength than the at least one portion of the first electromagnetic radiation. The converter structure is formed in a structured fashion in such a way that the converter structure has a predefined region, such that the at least one second electromagnetic radiation is emittable only from the predefined region. The predefined region has a smaller area than the optically active region.
Abstract:
An organic light-emitting component is disclosed. The organic light emitting component includes a substrate and at least one layer sequence arranged on the substrate and suitable for generating electromagnetic radiation. The at least one layer sequence may include at least one first electrode area arranged on the substrate, at least one second electrode area arranged on the first electrode area, a basic color unit arranged between the first electrode area and the second electrode area and a plurality of color units arranged between the basic color unit and the first or second electrode area, wherein the plurality of color units are arranged laterally offset to one another, and wherein the basic color unit and each of the plurality of color units respectively comprises at least one organic light-emitting layer.
Abstract:
Various embodiments may relate to a method for producing an optoelectronic component, including forming a first electrode on a substrate, arranging a first mask structure on or above the substrate, wherein the first mask structure comprises a first structuring region including an opening and/or a region prepared for forming an opening, arranging a second mask structure on or above the first mask structure, forming a second structuring region in the first mask structure and in the second mask structure in such a way that at least one part of the first structuring region in the first mask structure is formed outside the second structuring region in the first mask structure.
Abstract:
Various embodiments may relate to an optoelectronic component, including a carrier, which is formed in a transparent fashion, an optoelectronic layer structure including a first electrode, which is formed above the carrier and which is formed in a transparent fashion, an optically functional layer structure, which is formed above the first electrode, and a second electrode, which is formed above the optically functional layer structure, wherein a mirror region is formed on a side of the optically functional layer structure facing away from the carrier, the mirror region being formed in a specularly reflective fashion as viewed at least from the carrier, and an intermediate layer, which is formed between the carrier and the mirror region and which has an optical layer thickness that is greater than a coherence length of external light.