Abstract:
According to the present disclosure, a method for producing an optoelectronic component is provided. The method includes forming an optically functional layer structure in accordance with at least one part of a geometric network of a body, and bending the part of the geometric network in the at least one desired bending region, such that at least one part of the body is formed. The part of the geometric network includes at least one desired bending region.
Abstract:
In various embodiments, an optoelectronic assembly may include at least one organic light emitting diode including a first light emitting diode element and a second light emitting diode element, and an electronic circuit. The first light emitting diode element and the second light emitting diode element are electrically connected in parallel and are deposited monolithically on a common substrate, and the electronic circuit is designed to compare an electric current through the first light emitting diode element that flows during operation with an electric current through the second light emitting diode element that flows during operation and, depending on the comparison, to detect a short circuit of the first light emitting diode element or of the second light emitting diode element and to initiate an electrical switching off of one of the light emitting diode elements and/or of the assembly.
Abstract:
Various embodiments may relate to a process for producing an optoelectronic component. In the process, a carrier is provided. A first electrode is formed upon the carrier. An optically functional layer structure is formed upon the first electrode. A second electrode is formed upon the optically functional layer structure. At least one of the two electrodes is formed by disposing electrically conductive nanowires on a surface on which the corresponding electrode is to be formed, and by heating the nanowires in such a way that they plastically deform.
Abstract:
In various embodiments, an organic optoelectronic component is provided. The organic optoelectronic component may include a first electrode, an organic functional layer structure over the first electrode, and a second electrode over the organic functional layer structure. Optionally, the organic functional layer structure includes a charge carrier pair generation layer structure. At least one of the electrodes and/or the charge carrier pair generation layer structure includes electrically conductive nanostructures, the surfaces of which are at least partially coated with a coating material.
Abstract:
Various embodiments may relate to a component. The component includes an optically active region designed for electrically controllably transmitting, reflecting, absorbing, emitting and/or converting an electromagnetic radiation, and an optically inactive region formed alongside the optically active region, wherein the optically inactive region and/or the optically active region have/has an adaptation structure designed to adapt the value of an optical variable in the optically inactive region to a value of the optical variable in the optically active region.
Abstract:
An optoelectronic assembly includes an optoelectronic component having a surface light source for emitting a light on a substrate which is at least partly transmissive for the light emitted by the surface light source, wherein the optoelectronic component includes at least one first main emission surface and a second main emission surface wherein the second main emission surface is situated opposite the first main emission surface, and a reflective structure which is arranged at least partly in the beam path of the light emitted by the surface light source and is designed to reflect at least part of the light impinging on the reflective structure in the direction of the substrate, such that a laterally offset image of the surface light source is generatable. The reflective structure and the optoelectronic component are arranged at a distance from one another in a range of approximately 1 mm to approximately 1000 mm.
Abstract:
Various embodiments may relate to a method for forming a conductor path structure on an electrode surface of an electronic component. The method includes introducing electrically conductive metal particles into an insulating carrier material, producing a mixed composition by mixing the carrier material with the metal particles, applying the mixed composition to the electrode surface, separating the metal particles from the carrier material, allowing the metal particles to become attached to the electrode surface, fixing the metal particles attached to the electrode surface, and curing the carrier material.
Abstract:
In various embodiments, an optoelectronic assembly may include at least one organic light emitting diode including a first light emitting diode element and a second light emitting diode element, and an electronic circuit. The first light emitting diode element and the second light emitting diode element are electrically connected in parallel and are deposited monolithically on a common substrate, and the electronic circuit is designed to compare an electric current through the first light emitting diode element that flows during operation with an electric current through the second light emitting diode element that flows during operation and, depending on the comparison, to detect a short circuit of the first light emitting diode element or of the second light emitting diode element and to initiate an electrical switching off of one of the light emitting diode elements and/or of the assembly.
Abstract:
Various embodiments may relate to a method for producing an optoelectronic component, including forming a first electrode on a substrate, arranging a first mask structure on or above the substrate, wherein the first mask structure comprises a first structuring region including an opening and/or a region prepared for forming an opening, arranging a second mask structure on or above the first mask structure, forming a second structuring region in the first mask structure and in the second mask structure in such a way that at least one part of the first structuring region in the first mask structure is formed outside the second structuring region in the first mask structure.
Abstract:
The invention relates to a method for producing an organic light-emitting diode (1) comprising the following steps: providing a carrier (3) for the organic light-emitting diode (1), applying a solution (S) comprising a plurality of different emitter materials (E) to the carrier (1), wherein said emitter materials (E) are each formed by a certain type of organic molecule and have electrical charges that differ from each other, applying an electrical field (F), so that the solution is located in the electrical field (F), and drying the solution (S) into a plurality of emitter layers (20) in an organic layer stack (2), while the electrical field is applied, so that the emitter materials (E) are accommodated separately from each other, each in a certain emitter layer (20) of the organic stack (2).