摘要:
In one embodiment, a method for assisting programming a pulse generator comprises: defining a set of unique electrode combinations in the controller device, each electrode combination within the set providing a unique locus of stimulation for a single stimulation pulse applied at a base location relative to loci of stimulation of other electrode combinations, the set of unique electrode combinations defining a two-dimensional range of multiple loci of stimulation; providing one or more user interfaces to the clinician to control pulse generation and delivery by the single-source pulse generator; and processing input from the clinician related to relocation of a locus of stimulation, the processing comprising (i) automatically selecting an electrode combination from the set, and (ii) automatically modifying an electrode combination used by the single-source pulse generator to deliver electrical stimulation pulses to the selected electrode combination.
摘要:
A system, method, and computer program product for calibrating a stimulation device such as an implantable pulse generator (IPG). An IPG, whether it is a self-contained implantable pulse generator (SCIPG) or externally-powered implantable pulse generator (EPIPG), communicates with an external programmer to determine the characteristics of the stimuli delivered to the lead electrodes. An external programmer is used with patient feedback to determine initial threshold levels, and using the initial threshold levels, to determine threshold levels for combined electrode arrays.
摘要:
A hand-held programmer/monitor (500) for programming and monitoring an implantable tissue growth stimulator (10) is provided. The stimulator (10) includes circuitry (46) for implementing selected operations in response to a down-link signal transmitted by the programmer/monitor (500). The stimulator (10) also includes circuitry (14) for transmitting up-link signals to the programmer/monitor (500). The programmer/monitor (500) includes a control circuit (518) for generating the down-link signal. The control circuit (518) also processes the up-link signal to monitor the status of the implantable tissue growth stimulator (10). The programmer/monitor (500) also includes a transmit/receive circuit (514) for transmitting the down-link signal to and for receiving the up-link signal from the implantable tissue growth stimulator (10). The transmit/receive circuit (514) also couples the up-link signal to the control circuit (518).
摘要:
A PEMF contoured triangular transducer system (FIG. 1a-1b) used for PEMF therapy (such as after spinal fusion) uses a two-transducer configuration for generating flux-aided electromagnetic fields. The semi-rigid transducers (12, 14) are conformable to a selected anatomical contour, and incorporated with an adjustable belt (16) to provide bracing. The belt includes compartments for a drive electronics module (22), and a rechargeable battery pack (24), making the system portable. The drive electronics (FIG. 3) includes a PEMF processor (41) that executes a PEMF program for providing pulsing current to the front and back transducers at predetermined intervals, thereby activating the electromagnetic field according to a prescribed PEMF regimen.
摘要:
In one embodiment, a method of operating an implantable pulse generator comprises: providing power to a voltage converter at a first voltage level; outputting a second voltage level by the voltage converter, the second voltage level being a variable voltage level that is controlled by a control signal provided to the voltage converter, the second voltage level being provided to pulse generating circuitry of the implantable pulse generator, the second voltage level being selectable from a plurality of voltages including non-integer multiples of the first voltage level; generating pulses by the pulse generating circuitry, the pulse generating circuitry including current control circuitry for controlling the pulses to cause the pulses to provide substantially constant current to tissue of the patient; and applying at least two different control signals to the voltage converter during individual pulses to provide successively increasing voltages to the pulse generating circuitry during a respective pulse.
摘要:
The present invention relates to a percutaneous insertion-capable lead, wherein insertion made through a percutaneous insertion structure. For one embodiment of such lead, the electrode-supporting stimulation portion of the lead includes at least one waisted region, relative to a transverse dimension of the lead, to facilitate lead steerability.
摘要:
In one embodiment, there is disclosed a lead locking mechanism for use in a header component of an implantable pulse generator. In certain embodiments, the lead locking mechanism comprises a first locking member positioned to engage a surface of at least two leads; a second locking member positioned to also engage a surface of at least two leads, and a coupling member coupling the first locking member to the second locking member.
摘要:
In some embodiments, a paddle lead is implanted within a patient such that the electrodes are positioned within the cervical or thoracic spinal levels. An electrode combination on a first row of electrodes can be determined that is effective for a first pain location with minimal effects on other regions of the body. The first pain location can be addressed by stimulating a first dorsal column fiber due to the relatively fine electrical field resolution achievable by the multiple columns. Then, another electrode combination on a second row of electrodes can be determined for a second pain location with minimal effects on other regions. The second pain location could be addressed by stimulating a second dorsal column fiber. After the determination of the appropriate electrodes for stimulation, the patient's IPG can be programmed to deliver pulses using the first and second rows according to the determined electrode combinations.
摘要:
In one embodiment, a pulse generator for generating electrical stimulation for delivery to a patient, comprises: a hermetically sealed housing containing pulse generating circuitry; a header coupled to the housing for receiving one or more stimulation leads, wherein feedthrough wires are provided to conduct electrical pulses from the pulse generating circuitry to the header; the header comprising a plurality of connectors for electrically connecting to each terminal of the one or more stimulation leads, wherein an inductive winding is disposed around or adjacent to each of the connector structures and is electrically connected between the respective connector structure and a corresponding feedthrough wire to limit MRI induced heating of a respective electrode of the one or more stimulation leads.
摘要:
In some embodiments, a paddle lead is implanted within a patient such that the electrodes are positioned within the cervical or thoracic spinal levels. An electrode combination on a first row of electrodes can be determined that is effective for a first pain location with minimal effects on other regions of the body. The first pain location can be addressed by stimulating a first dorsal column fiber due to the relatively fine electrical field resolution achievable by the multiple columns. Then, another electrode combination on a second row of electrodes can be determined for a second pain location with minimal effects on other regions. The second pain location could be addressed by stimulating a second dorsal column fiber. After the determination of the appropriate electrodes for stimulation, the patient's IPG can be programmed to deliver pulses using the first and second rows according to the determined electrode combinations.