摘要:
A fluid contact surface actuation system for a vehicle, including a first fluid contact surface constructed and arranged to act against a first fluid passing over the first fluid contact surface; and a first fluid actuator coupled to the first fluid contact surface to move the first fluid contact surface between a first position and a second position to enable control of the vehicle in a predetermined manner, the first fluid actuator having a first resilient bladder that receives a second fluid such that pressure of the second fluid moves the first bladder between a contracted configuration and an expanded configuration.
摘要:
An assembly for controlling a vehicle, including a fluid contact surface constructed and arranged to act against a fluid passing over the fluid contact surface; and a support structure coupled to the fluid contact surface. The support structure is constructed and arranged to expand or contract between a first position and a second position, such that a first dimension of the support structure changes during movement of the support structure between the first position and the second position, while a second dimension of the support structure remains substantially constant during the movement of the support structure between the first position and the second position.
摘要:
An improvement of the prior art method of processing large scale integrated (LSI) semiconductors is disclosed, wherein an etching procedure, which was previously performed as the final processing step, is now done at an earlier stage to preclude damage to the surface of the wafer on which the active devices are formed. In the prior art method of fabricating an active device on a semiconductor wafer, an undesirable layer of field oxide manifests itself on the reverse side when the field oxide is grown on the obverse or principal side of the wafer. The prior processing philosophy was to allow the oxide layer to remain on the wafer until after the processing was completed and, as a final step, the undesired oxide coating was removed. This was done by carefully placing the wafer in a pool of etchant so that only the reverse side is etched. Since the wafer is only about 12 mils thick, the operator had to exercise extreme caution in placing the wafer in the etchant to prevent the etchant from creeping up the thickness dimension of the wafer and thus etching the obverse side. Our novel method contemplates modifying the processing steps of the prior art by removing the undesired field oxide before the circuits or active devices have been completely formed, when the wafer may be completely immersed in the etchant without damaging or etching areas on the active portion of the wafer.