Abstract:
A method of decoding a one-point algebraic geometric code defined on an algebraic curve of type C(a,b) represented by an equation F(X,Y) =0 of degree b in X and of degree a in Y over Fq, includes calculating extended error syndromes (σj(i)) associated with a received word (r) and determining the values of errors in each component r(x,yp,(x)) of the received word r, on the basis of the extended error syndromes calculated.
Abstract:
The invention relates to a method for transmitting a plurality of data packets to a receiver in a data communication system. The method comprises the steps of transmitting one or more data packets from a list of data packets to be transmitted (300); determining whether an acknowledgment is received for each transmitted data packet (301), and further comprises the following steps executed when it is determined at the determining step that an acknowledgement has not been received for at least one data packet, referred to as an unacknowledged data packet: selecting one or more additional data packets from the list of data packets to be transmitted (302); generating one or more parity packets by encoding a block of data containing a combination of the selected one or more additional data packets and at least one unacknowledged data packet using a forward error correction scheme (304); and transmitting at least one of the generated parity packets (305).The invention also relates to software applications for transmitting a plurality of data packets and for receiving them. Furthermore, the invention relates to a transmitting device and a receiving device implementing respectively the software application for transmitting the plurality of data packets and the software application for receiving those data packets, and to a memory medium for storing the code of such software applications.
Abstract:
A method of encoding information symbols comprises a step in which a word v, orthogonal to a matrix H, the element Hαβ of which is equal to the value taken by some monomial hα=YjXi at the point Pβ of some locating set, is associated with every block of k information symbols belonging to a Galois field Fq. The method chooses the set of monomials hα so as to define codes which can be decoded with an algorithm by aggregates of low complexity, and which provides a very good error correction capability, in particular for channels in which the errors tend to occur in bursts. Devices and apparatuses adapted to implement this method are also disclosed.
Abstract:
To interleave a binary sequence a represented by the polynomial a ( x ) = ∑ i = 0 n - 1 a i x i , where n=R.M with R≧M, i being an integer which may be written i=r.M+c, r and c being integers, r≧0 and c ε [0, M−1], there is obtained, from the sequence a, an interleaved binary sequence a*. The interleaved binary data sequence a* represented by the polynomial a * ( x ) = ∑ i = 0 n - 1 a i x i * where i*=[r−h(c)].M+c mod n, the h(c) being obtained by the choice of an M-tuple h0=[h0(0), . . . , h0(M−1)] of non-negative integers less than R−1 such that, given a predetermined set Π of circulating matrices P of dimension M×M, for any matrix P of Π, the residues modulo R of the components of the vector h0.P are not nil; and the corresponding choice of an M-tuple h obtained from h0 by the application of a permutation moving h0(c) to position L×c mod M, the integer L being relatively prime with M. (It is noted that the above underlining of the variables, and the above single bracketing, is in the original and is meant to be permanent.)
Abstract:
The present invention concerns a device (10) for the encoding of information symbols to transmit or to record, and for the correction of errors among the symbols received or read, according to codes defined over a Galois field Fq, where q is an integer greater than 2 and equal to a power of a prime number, and in which a set of elements of Fq are considered which are denoted yl(j), where j=1, . . . , R with 1≦R≦q−1 and l=0, . . . , p−1 with p>1. Said device (10) comprises a Reed-Solomon encoder (210), a Reed-Solomon decoder (220) and a unit (500) serving to calculate the inverse of a Vandermonde matrix as well as: registers “A” (420, 430, 440, 450) in which are stored, for the encoding, said information symbols, and, for the error correction, the symbols received or read after they have been corrected, registers “S” (280, 285, 290, 295) in which are stored, for the encoding, the symbols output from said Reed-Solomon encoder (210), and, for the error correction, the symbols entering said Reed-Solomon decoder (220), and registers “Y” (410, 411, 412, 413) in which said quantities yl(j) are stored.
Abstract:
The decoding method to which the present invention relates takes into account: at least one predetermined polynomial, and a received sequence r capable of being the result of the coding of a sequence of information symbols of polynomial representation u(x) representing a physical quantity, the coding including a turbocoding, and guaranteeing the divisibility of a sequence to be turbocoded, a(x) representing the sequence u(x), by each predetermined polynomial, This method includes: an operation of turbodecoding (601) the received sequence r into an estimated sequence â, at least one operation of calculating the remainder (602, 606) of the division of the polynomial representation â(x) of the estimated sequence â, by a said predetermined polynomial.