Abstract:
One feature pertains to a method operational at a device. The method includes performing authentication and key agreement with a session key management entity (SKME) device. The method also includes generating an authentication session key based in part on a secret key shared with a home subscriber server, the authentication session key being known to the SKME device. The method further includes generating a mobility session key based in part on the authentication session key, the mobility session key being known to a mobility management entity serving the device. Data sent from the device to a wireless communication network is cryptographically secured using the mobility session key.
Abstract:
Methods, systems, and devices for wireless communication at a network entity are described. A user equipment (UE) may obtain identification information for a device and may assist in establishing credentials by which the device accesses a wireless network, e.g., a cellular network. The UE may establish a connection with the wireless network using its own credentials. A device subscription administration server, which may be an entity within the wireless network core, may authenticate the device based on the identification information, which may include registering the device to access the wireless network, e.g., using different credentials than those of the UE, by associating the device identification information with the credentials of the UE. Once registered, the device may communicate with the wireless network. The device subscription administration server may then establish access parameters and communicate them to the UE, which may transmit them to the device over communication link.
Abstract:
A method and apparatus are provided for a subsidizing service provider entity to personalize a subscriber device to ensure the subscriber device cannot be used in a network of a different service provider entity. As the service provider entity subsidizes the subscriber device, it desires to ensure that subscriber device is personalized such that the subscriber device may operate only in its network and not a network of a different service provider entity. The subscriber device is pre-configured with a plurality of provider-specific and/or unassociated root certificates by the manufacturer of the subscriber device. A communication service is established between the service provider entity and the subscriber device allowing for the mutual authentication of the subscriber device and the service provider entity. After mutual authentication, the service provider entity sends a command to the subscriber device to disable/delete some/all root certificates that are unassociated with the service provider entity.
Abstract:
A configuration device is disclosed for configuring a network device in a communication network. The configuration device initiates pairing operations with the network device via a short-range communication connection. The configuration device determines whether the network device is in a registered state or an unregistered state. If the configuration device determines that the network device is in the unregistered state, the configuration device establishes a secure short-range communication channel between the configuration device and the network device. The configuration device transmits a network key to the network device via the secure short-range communication channel for configuring the network device to communicatively connect to the communication network. If the configuration device determines that the network device is in the registered state, the configuration device determines whether to unregister the network device.
Abstract:
Systems, devices, and methods for reporting information in real time about traffic generated by each application for a device are described. In one aspect, the network can configure a list of applications user equipment (UE) devices need to report traffic information for and then when one of these applications starts a communication, the UE may send traffic descriptor(s) describing the traffic generated by the application. In this way the network can accurately identify the traffic and take actions based on UE report and local policy or subscription.
Abstract:
The present application relates generally to wireless communication systems and more specifically to systems, methods, and devices for remote credentials management within wireless communication systems. In one aspect, a method of obtaining provisioning information via a service provider network, such as a cellular network, for a device is provided. The method includes transmitting an attach request via the service provider network for provisioning service, the attach request including device vendor information which includes a unique identifier for the device. The method further includes receiving provisioning information from the service provider upon authentication of the device vendor information. In other aspects, systems and methods for providing provisioning information are described.
Abstract:
A particular method includes performing a bootstrapped extensible authentication protocol (EAP) re-authentication protocol (ERP) re-authentication at a mobile device after performing an EAP authentication with the access point prior to expiration of a master session key (MSK) associated with the EAP authentication. Another particular method includes performing, at an access point, a bootstrapped ERP re-authentication of a mobile device without interrupting a flow of data packets with respect to the mobile device.
Abstract:
The present disclosure provides techniques that may be applied, for example, for providing network policy information in a secure manner. In some cases, a UE may receive a first message for establishing a secure connection with a network, wherein the first message comprises network policy information, generate a first key based in part on the network policy information, and use the first key to verify the network policy information.
Abstract:
Embodiments include devices and methods for providing secure communications between a first computing device and a second computing device are disclosed. A processor of the first computing device may determine in a first application software first security key establishment information. The processor may provide the first security key establishment information to a communication layer of the first computing device for transmission to the second computing device. The processor may receive, in the first application software from the communication layer of the first computing device, second security key establishment information received from the second computing device. The processor may determine a first security key by the first application software based at least in part on the second security key establishment information. The processor may provide the first security key to the communication layer for protecting messages from the first application software to the second computing device.
Abstract:
Certain aspects of the present disclosure provide techniques for managing security keys for enciphering and deciphering packets transmitted in a wireless communications system. According to certain aspects, a method of wireless communication by a user equipment (UE) is provided. The method generally includes obtaining an indication of a key area identifier (ID) of a first cell node, wherein the key area ID identifies a set of cell nodes that are associated with a network node that uses a first key for enciphering or deciphering messages and communicating a first set of messages with the first cell node using the first key for enciphering or deciphering the first set of messages.