Abstract:
A method operational on a receiver device for decoding a codeword is provided. At least a portion of a composite code mask is obtained, via a receiver sensor, and projected on the surface of a target object. The composite code mask may be defined by a code layer and a carrier layer. A code layer of uniquely identifiable spatially-coded codewords may be defined by a plurality of symbols. A carrier layer may be independently ascertainable and distinct from the code layer and may include a plurality of reference objects that are robust to distortion upon projection. At least one of the code layer and carrier layer may have been pre-shaped by a synthetic point spread function prior to projection. The code layer may be adjusted, at a processing circuit, for distortion based on the reference objects within the portion of the composite code mask.
Abstract:
Certain aspects relate to systems and techniques for performing local intensity equalization on images in a set of images exhibiting local intensity variations. For example, the local intensity equalization can be used to perform accurate region matching and alignment of the images. The images can be partitioned into regions of pixel blocks, for instance based on location, shape, and size of identified keypoints in the images. Regions depicting the same feature in the images can be equalized with respect to intensity. Region matching based on the keypoints in the intensity-equalized regions can be performed with accuracy even in images captured by asymmetric sensors or exhibiting spatially varying intensity.
Abstract:
Described are systems and methods for measuring objects using stereoscopic imaging. After determining keypoints within a set of stereoscopic images, a user may select a desired object within an imaged scene to be measured. Using depth map information and information about the boundary of the selected object, the desired measurement may be calculated and displayed to the user on a display device. Tracking of the object in three dimensions and continuous updating of the measurement of a selected object may also be performed as the object or the imaging device is moved.
Abstract:
A method for generating codes for a code mask is provided. A plurality of symbols may be arranged into an n1 by n2 symbol structure, where n1 and n2 are integer values. A plurality of codewords may be defined from different overlapping k1 by k2 windows within the symbol structure, wherein co-linear and spatially overlapping windows define unique codewords, and the codewords are unique in a first direction of the symbol structure but are repeated in a second direction that is perpendicular to the first direction. A plurality of the symbol structures as a code mask, wherein symbols in two adjacent k1 by k2 windows are selected so as to avoid codeword aliasing of codewords in the two adjacent k1 by k2 windows.
Abstract:
A method operational on a receiver device for decoding a codeword is provided. At least a portion of a composite code mask is obtained, via a receiver sensor, and projected on the surface of a target object. The composite code mask may be defined by a code layer and a carrier layer. A code layer of uniquely identifiable spatially-coded codewords may be defined by a plurality of symbols. A carrier layer may be independently ascertainable and distinct from the code layer and may include a plurality of reference objects that are robust to distortion upon projection. At least one of the code layer and carrier layer may have been pre-shaped by a synthetic point spread function prior to projection. The code layer may be adjusted, at a processing circuit, for distortion based on the reference objects within the portion of the composite code mask.
Abstract:
A device includes a first camera and a processor configured to detect one or more first keypoints within a first image captured by the first camera at a first time, detect one or more second keypoints within a second image captured by a second camera at the first time, and detect the one or more first keypoints within a third image captured by the first camera at a second time. The processor is configured to determine a pose estimation based on coordinates of the one or more first keypoints of the first image relative to a common coordinate system, coordinates of the one or more second keypoints of the second image relative to the common coordinate system, and coordinates of the one or more first keypoints of the third image relative to the common coordinate system. The first coordinate system is different than the common coordinate system.
Abstract:
Devices and methods for providing seamless preview images for multi-camera devices having two or more asymmetric cameras. A multi-camera device may include two asymmetric cameras disposed to image a target scene. The multi-camera device further includes a processor coupled to a memory component and a display, the processor configured to retrieve an image generated by a first camera from the memory component, retrieve an image generated by a second camera from the memory component, receive input corresponding to a preview zoom level, retrieve spatial transform information and photometric transform information from memory, modify at least one image received from the first and second cameras by the spatial transform and the photometric transform, and provide on the display a preview image comprising at least a portion of the at least one modified image and a portion of either the first image or the second image based on the preview zoom level.
Abstract:
Certain aspects relate to systems and techniques for performing local intensity equalization on images in a set of images exhibiting local intensity variations. For example, the local intensity equalization can be used to perform accurate region matching and alignment of the images. The images can be partitioned into regions of pixel blocks, for instance based on location, shape, and size of identified keypoints in the images. Regions depicting the same feature in the images can be equalized with respect to intensity. Region matching based on the keypoints in the intensity-equalized regions can be performed with accuracy even in images captured by asymmetric sensors or exhibiting spatially varying intensity.
Abstract:
Systems and methods for controlling structured light laser systems are disclosed. One aspect is a structured light system. The system includes a memory device configured to store a depth map. The system further includes an image projecting device including a laser system configured to project codewords. The system further includes a receiver device including a sensor, the receiver device configured to sense the projected codewords reflected from an object. The system further includes a processing circuit configured to retrieve a portion of the depth map and calculate expected codewords from the depth map. The system further includes a feedback system configured to control the output power of the laser system based on the sensed codewords and the expected codewords.
Abstract:
Systems and methods for controlling structured light laser systems are disclosed. One aspect is a structured light system. The system includes a memory device configured to store a depth map. The system further includes an image projecting device including a laser system configured to project codewords. The system further includes a receiver device including a sensor, the receiver device configured to sense the projected codewords reflected from an object. The system further includes a processing circuit configured to retrieve a portion of the depth map and calculate expected codewords from the depth map. The system further includes a feedback system configured to control the output power of the laser system based on the sensed codewords and the expected codewords.