Abstract:
The present specification discloses methods for inspecting an object. The method includes scanning an object in a two-step process. In the primary scan, a truck or cargo container (container) is completely scanned with a fan beam radiation, the transmitted radiation is measured with an array of detectors, and the transmission information and optionally the fission signatures are analyzed to determine the presence of high-density, high-Z and fissionable materials. If the container alarms in one or more areas, the areas are subjected to a secondary scan. This is done by precisely repositioning the container to the location of the suspect areas, adjusting the scanning system to focus on the suspect areas, performing a stationary irradiation of the areas, and analyzing the measured feature signatures to clear or confirm the presence of SNM.
Abstract:
A system for scanning aircraft for concealed threats is provided. The system comprises a vehicle and a manipulator arm attached with a scanning head that can be maneuvered in multiple directions to completely scan an aircraft from the outside. The system uses transmission based X-ray detection, backscatter based X-ray detection or a combination thereof, in various embodiments. The system also includes gamma-ray and neutron detectors, for detection of nuclear and radioactive materials.
Abstract:
The present application discloses a system for scanning a shoe for illegal materials. The system includes an X-ray source for projecting a beam of X-rays onto the shoe, a detector array for detecting X-rays transmitted through the shoe and at least one metal detector coil for detecting metals within the shoe. The system produces a radiographic image of the shoe by processing the detected X-rays and data obtained from the at least one metal detector coil. Other embodiments are directed toward other screening technologies, including millimeter wave screening technologies.
Abstract:
The present invention provides a Time-of-Flight based neutron inspection system. The system employs a collimated beam of fast neutrons for targeted interrogation of suspect areas in cargo. Elemental composition is determined as a function of depth. Analysis is then used to determine the presence of contraband. The system may be used for secondary inspection for material discrimination to reduce false alarm rate and high cost and time associated with manual unpacking
Abstract:
The present specification discloses systems and methods for integrating manifest data for cargo and light vehicles with their X-ray images generated during scanning. Manifest data is automatically imported into the system for each shipment, and helps the security personnel to quickly determine the contents of cargo. In case of a mismatch between cargo contents shown by manifest data and the X-ray images, the cargo may be withheld for further inspection. In one embodiment, the process of analyzing the X-ray image of the cargo in conjunction with the manifest data is automated.
Abstract:
The present specification discloses systems and methods for integrating manifest data for cargo and light vehicles with their X-ray images generated during scanning. Manifest data is automatically imported into the system for each shipment, and helps the security personnel to quickly determine the contents of cargo. In case of a mismatch between cargo contents shown by manifest data and the X-ray images, the cargo may be withheld for further inspection. In one embodiment, the process of analyzing the X-ray image of the cargo in conjunction with the manifest data is automated.
Abstract:
An X-ray inspection system for scanning objects is provided. The system includes a stationary X-ray source made of one or more linear modules positioned around a scanning volume, and defining sparsely positioned multiple stationary X-ray source points from which X-rays can be directed through the scanning volume. An X-ray detector array extends around the scanning volume and is arranged to detect X-rays from the source points which have passed through the scanning volume. A conveyor is arranged to convey the objects through the scanning volume and at least one processor processes the detected X-rays to produce three dimensional images of the items.
Abstract:
The present specification discloses systems and methods for integrating manifest data for cargo and light vehicles with their X-ray images generated during scanning. Manifest data is automatically imported into the system for each shipment, and helps the security personnel to quickly determine the contents of cargo. In case of a mismatch between cargo contents shown by manifest data and the X-ray images, the cargo may be withheld for further inspection. In one embodiment, the process of analyzing the X-ray image of the cargo in conjunction with the manifest data is automated.
Abstract:
The present specification discloses systems and methods for integrating manifest data for cargo and light vehicles with their X-ray images generated during scanning. Manifest data is automatically imported into the system for each shipment, and helps the security personnel to quickly determine the contents of cargo. In case of a mismatch between cargo contents shown by manifest data and the X-ray images, the cargo may be withheld for further inspection. In one embodiment, the process of analyzing the X-ray image of the cargo in conjunction with the manifest data is automated.
Abstract:
The present specification discloses systems and methods for integrating manifest data for cargo and light vehicles with their X-ray images generated during scanning. Manifest data is automatically imported into the system for each shipment, and helps the security personnel to quickly determine the contents of cargo. In case of a mismatch between cargo contents shown by manifest data and the X-ray images, the cargo may be withheld for further inspection. In one embodiment, the process of analyzing the X-ray image of the cargo in conjunction with the manifest data is automated.