Abstract:
The present invention concerns a Magnus rotor comprising a carrier, and a rotary body mounted rotatably to the carrier, as well as a drive device for driving the rotary body. The carrier has at least one opening which connects an internal space in the carrier with an external space in such a way that air can pass through between those two spaces. The invention further concerns a method of cooling elements of a Magnus rotor, a method of heating a rotary body of a Magnus rotor and a ship.
Abstract:
A rotor blade for a wind power installation, has at least a first component and a second component. The first component has a rotor blade tip and the second component has a rotor blade root. The first and second components are in the form of separate parts for jointly forming the rotor blade. The first component is of at least a first material and the second component is of at least a second material.
Abstract:
The invention relates to a ship, in particular a ship comprising at least one sail rotor. According to the invention, the ship has a front part that has a height-adjustable and/or pivotable panel.
Abstract:
The present invention concerns a Magnus rotor comprising a guide roller which is arranged at the lower outer periphery of the Magnus rotor and which bears against the Magnus rotor in play-free relationship, a walkway surface arranged beneath the guide roller, and a cover which covers the guide roller and the walkway surface. In an opened condition the cover exposes the guide roller and the walkway surface so that a person on the walkway surface can perform working operations at the guide roller.
Abstract:
The invention concerns a ship comprising at least one motor for driving the ship and at least one crane. To lift the motor at least one crane can be brought into engagement with the at least one motor through at least one closable opening. The invention further concerns a ship drive for driving a ship as well as a method of exchanging ship motors arranged within a ship for driving the ship together with peripheral devices. The invention further concerns the use of a wind power installation generator.
Abstract:
The invention concerns a ship comprising at least one hold, and at least one ventilation apparatus for ventilation of the hold, which has at least one air inlet and at least one air outlet connected to the air inlet by means of a passage. In particular the invention concerns a ship having a ventilation apparatus, wherein the passage has at least one portion arranged above the air inlet. The invention further concerns a ventilation apparatus for ventilation of the hold of a ship.
Abstract:
A rotor blade includes a first rotor blade section, a second rotor blade section, a control device, and a reset device. The control device is configured to displace the first rotor blade section and the second rotor blade section relative to each other so as to form a telescopic rotor blade which can adopt a minimum position, an intermediate position or a maximum position. The reset device is configured so that, when the control device experiences a functional limitation, the telescopic rotor blade assumes the minimum position.
Abstract:
The invention relates to a ship comprising a plurality of Magnus rotors. Each Magnus rotor is associated with an electric motor which can be controlled individually and which is used to rotate the Magnus rotor. Each electric motor is associated with a converter in order to control the rotational speed and/or the rotational direction of the electric motor. The ship also comprises a central control unit which is connected to the converters, to control the individual converters, in order to control the rotational speed and/or the rotational direction of the Magnus rotors, independently from the other Magnus rotors. The ship also comprises an electric motor as the main drive of the ship, a converter for controlling the electric motor is associated with the electric motor. Said control unit controls the Magnus rotor in a first operational mode in such a manner that a maximal drive force is reached.
Abstract:
The invention concerns a ship, in particular a cargo ship, having a load surface for receiving load items, in particular piece goods. The invention concerns in particular a ship whose load surface has a plurality of receiving means which can be connected to fixing means and which are distributed in a grid over the load surface. The invention further concerns a floor element for a ship, in particular a cargo ship, and a securing element.
Abstract:
The invention relates to a ship comprising a plurality of Magnus rotors. Each Magnus rotor is associated with an electric motor which can be controlled individually and which is used to rotate the Magnus rotor. Each electric motor is associated with a converter in order to control the rotational speed and/or the rotational direction of the electric motor. The ship also comprises a central control unit which is connected to the converters, to control the individual converters, in order to control the rotational speed and/or the rotational direction of the Magnus rotors, independently from the other Magnus rotors. The ship also comprises an electric motor as the main drive of the ship, a converter for controlling the electric motor is associated with the electric motor. Said control unit controls the Magnus rotor in a first operational mode in such a manner that a maximal drive force is reached.