Abstract:
A spectral filter may include a plurality of filter arrays each including a plurality of unit filters having different center wavelengths from each other. Each of the plurality of unit filters may include a first metal reflection layer and a second metal reflection layer which are disposed to be apart from each other; a cavity including a first pattern and being arranged between the first metal reflection layer and the second metal reflection layer; and a lower pattern film being disposed under the first metal reflection layer and including a second pattern. In unit filters having a same center wavelength in each of the plurality of unit filters corresponding to the plurality of filter arrays, the first pattern of the cavity and the second pattern of the lower pattern film may vary according to a position of the unit filters.
Abstract:
Provided is a spectral filter, and an image sensor and an electronic device each including the spectral filter. The spectral filter includes: at least one first filter having a central wavelength in a first wavelength region; and at least one second filter having a central wavelength in a second wavelength region. The first filter includes: a plurality of first metal reflection layers vertically spaced apart from each other; and at least one first cavity provided between the plurality of first metal reflection layers. The second filter includes: a second metal reflection layer and a Bragg reflection layer vertically spaced apart from each other; and at least one second cavity disposed between the second metal reflection layer and the Bragg reflection layer.
Abstract:
Provided is a random number generator including a single-photon emitter configured to emit single photons by pumping, a waveguide configured to guide the single photons emitted from the single-photon emitter to the inside of the waveguide, the waveguide including a first output terminal and a second output terminal that are respectively provided at both end portions of the waveguide, the single photons being output from the first output terminal and the second output terminal, and a first single-photon detector and a second single-photon detector respectively provided at the first output terminal and the second output terminal and configured to detect the single photons output from the first output terminal and the second output terminal, respectively.
Abstract:
An optical filter may include a first reflector and a second reflector. The first reflector may include a plurality of first gratings having a first sub-wavelength dimension and being arranged to recur at a first interval in a first direction. The second reflector may be spaced apart from the first reflector and include a plurality of second gratings having a second sub-wavelength dimension and arranged to recur at a second interval in a direction parallel to the first direction. The first reflector and the second reflector may include different materials or different geometric structures from each other. Accordingly, it is easy to adjust the transmission wavelength characteristics of the optical filter.
Abstract:
An optical filter may include a first reflector and a second reflector. The first reflector may include a plurality of first gratings having a first sub-wavelength dimension and being arranged to recur at a first interval in a first direction. The second reflector may be spaced apart from the first reflector and include a plurality of second gratings having a second sub-wavelength dimension and arranged to recur at a second interval in a direction parallel to the first direction. The first reflector and the second reflector may include different materials or different geometric structures from each other. Accordingly, it is easy to adjust the transmission wavelength characteristics of the optical filter.
Abstract:
Provided are a semiconductor laser diode and a method for fabricating the same. The semiconductor laser diode includes a c-plane substrate, a group III nitride layer disposed on the c-plane substrate, and a first semiconductor layer, an active layer, and a second semiconductor layer disposed on the group III nitride layer in the stated order, wherein each of the first semiconductor layer and the second semiconductor layer is exposed to the outside of the semiconductor laser diode.
Abstract:
Provided are a speckle-based authentication apparatus, an authentication system that includes the speckle-based authentication apparatus, and an authentication method using the speckle-based authentication apparatus. The speckle-based authentication apparatus includes an optical source configured to radiate light onto an object that is placed apart from the optical source; and a detector configured to detect a speckle pattern generated from the object in response to the light being radiated onto the object and detect location information of the object. Thus, the object is authenticated by comparing the speckle pattern detected by the detector with a speckle pattern stored in advance.