Abstract:
The present invention relates to a transmit diversity method for FQAM and an apparatus therefor. According to the present invention, a transmit diversity method for FQAM and apparatus therefor are provided, the transmit diversity method comprising the steps of: modulating data into at least one FQAM symbol; interleaving a plurality of tones constituting the at least one FQAM symbol such that tones having the same index are located in adjacent resources; and transmitting the at least one interleaved FQAM symbol through at least one transceving unit.
Abstract:
A pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system, such as long term evolution (LTE). A user equipment (UE) in a wireless communication system is provided. The UE includes a transceiver, and at least one processor coupled to the transceiver and configured to generate a lone truncated buffer status report (BSR) based on a number of padding bits, and transmit the long truncated BSR informing of data volume for at least one logical channel group among logical channel groups having data for transmission, wherein the data volume for the at least one logical channel group is reported following an order that is determined based on a highest priority logical channel in each of the at least one logical channel group.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
Abstract:
A pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system, such as long term evolution (LTE). A user equipment (UE) in a wireless communication system is provided. The UE includes a transceiver, and at least one processor coupled to the transceiver and configured to generate a lone truncated buffer status report (BSR) based on a number of padding bits, and transmit the long truncated BSR informing of data volume for at least one logical channel group among logical channel groups having data for transmission, wherein the data volume for the at least one logical channel group is reported following an order that is determined based on a highest priority logical channel in each of the at least one logical channel group.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present invention is a method for transmitting, by a transmitter, a signal in order to efficiently transmit the signal so that heterogeneous services can coexist, the method comprising the steps of: confirming whether a signal to be transmitted is a first signal or a second signal; if the signal to be transmitted is the first signal, transmitting the first signal to a receiver by applying puncturing in a resource region in which the first signal is transmitted and in a resource region overlapping with the second signal; and if the signal to be transmitted is the second signal, applying a phase rotation to the second signal and transmitting the second signal.
Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for Internet of things (IoT) are provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
Abstract:
A method and a transmission device of a mobile communication system are disclosed. The method includes determining a modulation method for data transmission, determining the level of a quadrature amplitude modulation (QAM) according to the determined modulation method, determining the amplitude of a carrier wave and the phase of the carrier wave on the basis of the determined QAM level and the data to be transmitted, and, when the determined modulation method is a first modulation method, determining a sequence length, selecting a sequence form among sequences having the determined length according to the data to be transmitted, and generating a symbol modulating the data to be transmitted, on the basis of the selected sequence, the determined amplitude of the carrier wave, and the determined phase of the carrier wave.