Abstract:
A method is provided for scoring glasses. The method includes the steps of generating a deep crack in the glass along an intended separation line by exerting pressure onto the glass surface using a rigid scoring tool, wherein the scoring tool, by being pressed against the glass surface and due to the advancement force while introducing the deep crack generates a zone of elastic strain in the glass in a direction along the glass surface and perpendicular to the separation line, which extends in an arc in the plane defined by the separation line perpendicular to the glass surface such that one leg of the arc is located close to the contact point of the scoring tool on the glass surface and another leg is located inside the glass. The arc being open towards the advancement/advancement direction of the scoring tool.
Abstract:
A method for testing the strength of a sheet-like element having two opposite faces and made of hard brittle material under tensile stress is provided. The method includes passing each of the faces of the element over a roller and thereby bending the element so that each of the faces is subjected to a first tensile stress in a portion in which the opposite face is in contact with a surface of the roller; exerting a second tensile force on the element in the direction of advancement so that both faces are subjected to the second tensile stress of at least 2 MPa so that the first and second tensile stresses add up to define a resultant tensile stress; and monitoring the element and determining whether the element has a defined breaking strength equal to the resultant tensile stress or whether the element breaks under the resultant tensile stress.
Abstract:
An electrical storage system is provided that has a thickness of less than 2 mm, which includes at least one sheet-type discrete element. The sheet-type discrete element exhibits high resistance against an attack of transition metals or transition metal ions, in particular titanium, wherein the sheet-type discrete element contains titanium. The invention also relates to a sheet-type discrete element for use in an electrical storage system, which exhibits high resistance to the attack of transition metals or of transition metal ions, in particular titanium.
Abstract:
Thin glass elements with improved edge strength are provided—from a sheet glass element that has two opposite parallel faces and an edge connecting the faces. The sheet glass element has a thickness of at most 700 μm. At least a portion of the edge is defined by an edge surface portion that is convexly curved, so that at least one of the faces merges into the edge surface portion, wherein a curved arc of the edge surface portion has a length that is at least 1/30 of the thickness of the sheet glass element. In the region of the convex curvature, the edge surface portion has indentations in the form of furrows.
Abstract:
A method and an apparatus for examining the fracture strength of flat samples made of brittle-fracture material are provided. The margin of the respective sample is subjected to tensile stress by bending the material in a circular arc shape.
Abstract:
A method and an apparatus for examining the fracture strength of flat samples made of brittle-fracture material are provided. The margin of the respective sample is subjected to tensile stress by bending the material in a circular arc shape.
Abstract:
A partial beam splitter includes a substrate including a substrate material; and a coating arranged on at least one main surface of the substrate. Along a first direction which is parallel to a normal vector of the main surface, the substrate and all coatings having a total thickness. For a specific light beam having a specific wavelength within a range of 450 nm and 650 nm which is incident on the partial beam splitter along a second direction with an angle of 32° enclosed between a vector pointing in the first direction and a vector pointing in the second direction, the specific light beam after transmitting through the partial beam splitter has a phase having a phase difference of an absolute value of smaller than or equal to 30° compared to the case in which, under otherwise identical conditions, the partial beam splitter is replaced by a similar reference substrate.
Abstract:
Thin glass elements with improved edge strength are provided—from a sheet glass element that has two opposite parallel faces and an edge connecting the faces. The sheet glass element has a thickness of at most 700 μm. At least a portion of the edge is defined by an edge surface portion that is convexly curved, so that at least one of the faces merges into the edge surface portion, wherein a curved arc of the edge surface portion has a length that is at least 1/30 of the thickness of the sheet glass element. In the region of the convex curvature, the edge surface portion has indentations in the form of furrows.
Abstract:
At least one composite workpiece includes: a substrate body including at least one first surface and at least one second surface, the at least one first surface of the substrate body being shaped convexly at least in areas and the at least one second surface of the substrate body being shaped concavely at least in areas, and the at least one composite workpiece has a bow with an absolute value of between 0.1 μm and 50 μm due to the curved shape of the at least one first surface and the at least one second surface; and at least one first coating, at least the at least one first surface of the substrate body being coated at least in areas with the first coating.
Abstract:
An electrical storage system is provided that has a thickness of less than 2 mm and includes comprises at least one sheet-like discrete element. At least one surface of the at least one sheet-like discrete element is designed to be chemically reactive to a reduced degree, inert, and/or permeable to a reduced degree, and/or impermeable with respect to materials coming into contact with the surface. Also provided are a sheet-like discrete element and to the production and use thereof.