Abstract:
A composite includes a component and a glass or glass ceramic material. The component has a first coefficient of expansion α1 and the glass or the glass ceramic material has a second coefficient of expansion α2. The glass or the glass ceramic material has a surface with a thickness and thickness differences (TTV) within the surface, and thickness fluctuations (LTV). The composite has a residual stress in the glass or the glass ceramic material (WARP), and a geometric and material-physical degree of compatibility KG≥4.
Abstract:
A method and apparatus for scoring thin glass for the purpose of score and break separation as well as an accordingly prepared scored thin glass are provided. The scoring tool is pressed onto the thin glass and drawn along the scoring line with an adjusted scoring contact pressure force as a vertical scoring force component. This permits to production of prescored ultrathin glass of Knoop hardness from 350 to 650 with a score depth from 1/20 to ⅘ of the material thickness.
Abstract:
A device for cutting through workpieces of mechanically brittle and non-metallic material moving at a speed along a separation line after scoring is provided. The device includes a tool holder that is rotatable about an axis of rotation. The tool holder accommodates at least one cutting wire as a cutting tool to introduce a surface rupture or a crack into the workpiece. The cutting wire is disposed in the tool holder in such a manner that the surface rupture or the crack is introduced substantially perpendicular to a feed direction of the workpiece moving at a speed.
Abstract:
Thin glass elements with improved edge strength are provided—from a sheet glass element that has two opposite parallel faces and an edge connecting the faces. The sheet glass element has a thickness of at most 700 μm. At least a portion of the edge is defined by an edge surface portion that is convexly curved, so that at least one of the faces merges into the edge surface portion, wherein a curved arc of the edge surface portion has a length that is at least 1/30 of the thickness of the sheet glass element. In the region of the convex curvature, the edge surface portion has indentations in the form of furrows.
Abstract:
Thin glass elements with improved edge strength are provided—from a sheet glass element that has two opposite parallel faces and an edge connecting the faces. The sheet glass element has a thickness of at most 700 μm. At least a portion of the edge is defined by an edge surface portion that is convexly curved, so that at least one of the faces merges into the edge surface portion, wherein a curved arc of the edge surface portion has a length that is at least 1/30 of the thickness of the sheet glass element. In the region of the convex curvature, the edge surface portion has indentations in the form of furrows.
Abstract:
Thin glass elements with improved edge strength are provided—from a sheet glass element that has two opposite parallel faces and an edge connecting the faces. The sheet glass element has a thickness of at most 700 μm. At least a portion of the edge is defined by an edge surface portion that is convexly curved, so that at least one of the faces merges into the edge surface portion, wherein a curved arc of the edge surface portion has a length that is at least 1/30 of the thickness of the sheet glass element. In the region of the convex curvature, the edge surface portion has indentations in the form of furrows.
Abstract:
A method is provided for aligning scoring tools and for scoring glass, in particular thin glass, along predetermined scoring lines in preparation for breaking along the score. Glass substrates, in particular thin glass substrates, produced by such method are also provided. The method includes the determination of the actual orientation of the cutting edge of the scoring tool and aligning of the cutting edge to a target orientation of the cutting edge.
Abstract:
A plate-like glass element includes a pair of opposite side faces and an opening having a transverse dimension of at least 200 μm. The opening is delimited by an edge. The edge has a plurality of rounded, substantially hemispherical depressions that adjoin one another. The plurality of rounded, substantially hemispherical depressions having abutting concave roundings which form ridges.
Abstract:
A method is provided for scoring glasses. The method includes the steps of generating a deep crack in the glass along an intended separation line by exerting pressure onto the glass surface using a rigid scoring tool, wherein the scoring tool, by being pressed against the glass surface and due to the advancement force while introducing the deep crack generates a zone of elastic strain in the glass in a direction along the glass surface and perpendicular to the separation line, which extends in an arc in the plane defined by the separation line perpendicular to the glass surface such that one leg of the arc is located close to the contact point of the scoring tool on the glass surface and another leg is located inside the glass. The arc being open towards the advancement/advancement direction of the scoring tool.
Abstract:
A method of producing an electronic component is provided. The method includes providing flat glass having a dielectric constant of less than 4.3 and a dielectric loss factor of 0.004 or less at 5 GHz; configuring the flat glass as one of an interposer, a substrate, or a superstrate; and forming the interposer, the substrate, or the superstrate into the electronic component. The electronic component can be an antenna, a patch antenna, an array of antennas, a phase shifter element, and a liquid crystal-based phase shifter element.