Abstract:
An object is to reduce variation in shape of crystals that are to be formed. Solutions containing respective raw materials are made in an environment where an oxygen concentration is lower than that in air, the solutions containing the respective raw materials are mixed in an environment where an oxygen concentration is lower than that in air to form a mixture solution, and with use of the mixture solution, a composite oxide is formed by a hydrothermal method.
Abstract:
Occlusion and release of lithium ion are likely to one-dimensionally occur in the b-axis direction of a crystal in a lithium-containing composite oxide having an olivine structure. Thus, a positive electrode in which the b-axes of lithium-containing composite oxide single crystals are oriented vertically to a surface of a positive electrode current collector is provided. The lithium-containing composite oxide particles are mixed with graphene oxide and then pressure is applied thereto, whereby the rectangular parallelepiped or substantially rectangular parallelepiped particles are likely to slip. In addition, in the case where the rectangular parallelepiped or substantially rectangular parallelepiped particles whose length in the b-axis direction is shorter than those in the a-axis direction and the c-axis direction are used, when pressure is applied in one direction, the b-axes can be oriented in the one direction.
Abstract:
A positive-electrode active material with improved electrical conductivity, and a power storage device using the material are provided. A positive-electrode active material with large capacity, and a power storage device using the material are provided. A core including lithium metal oxide is used as a core of a main material of the positive-electrode active material, and one to ten pieces of graphene is used as a covering layer for the core. A hole is provided for graphene, whereby transmission of a lithium ion is facilitated, resulting in improvement of use efficiency of current.
Abstract:
At least one of an aqueous solution A containing lithium, an aqueous solution B containing iron, manganese, cobalt, or nickel, and an aqueous solution C containing a phosphoric acid includes graphene oxide. The aqueous solution A is dripped into the aqueous solution C, so that a mixed solution E including a precipitate D is prepared. The mixed solution E is dripped into the aqueous solution B, so that a mixed solution G including a precipitate F is prepared. The mixed solution G is subjected to heat treatment in a pressurized atmosphere, so that a mixed solution H is prepared, and the mixed solution H is then filtered. Thus, particles of a compound containing lithium and oxygen which have a small size are obtained.