Abstract:
A tandem light-emitting element in which generation of crosstalk can be suppressed even when the element is applied to a high-definition display is provided. In the tandem light-emitting element, a layer in contact the anode side of an intermediate layer contains 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline (abbreviation: NBPhen).
Abstract:
A light-emitting element with high reliability that can keep favorable characteristics after long-time driving is provided. In addition, a light-emitting device having a long lifetime including the light-emitting element is provided. Moreover, an electronic device and a lighting device having a long lifetime are provided. In a light-emitting element including an EL layer between a pair of electrodes, a light-emitting layer included in the EL layer has a stacked-layer structure which is different from the conventional structure, whereby the light-emitting element can keep favorable characteristics after long-time driving even in the case where carrier balance is changed over time due to driving of the light-emitting element or a light-emitting region is shifted due to the change.
Abstract:
A light-emitting element with high reliability that can keep favorable characteristics after long-time driving is provided. In addition, a light-emitting device having a long lifetime including the light-emitting element is provided. Moreover, an electronic device and a lighting device having a long lifetime are provided. In a light-emitting element including an EL layer between a pair of electrodes, a light-emitting layer included in the EL layer has a stacked-layer structure which is different from the conventional structure, whereby the light-emitting element can keep favorable characteristics after long-time driving even in the case where carrier balance is changed over time due to driving of the light-emitting element or a light-emitting region is shifted due to the change.
Abstract:
A tandem light-emitting element in which generation of crosstalk can be suppressed even when the element is applied to a high-definition display is provided. In the tandem light-emitting element, a layer in contact the anode side of an intermediate layer contains 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline (abbreviation: NBPhen).
Abstract:
A light-emitting device with high outcoupling efficiency is provided. In the light-emitting device including a light-emitting layer between a pair of electrodes, a low refractive index layer containing an organic compound and an inorganic compound is provided between the light-emitting layer and an anode or between the light-emitting layer and a cathode, and the low refractive index layer has a refractive index of less than or equal to 1.80 at a wavelength of light extracted from the light-emitting layer.
Abstract:
A display panel includes a plurality of light-emitting elements. Light emitted from a first light-emitting element has a CIE 1931 chromaticity coordinate x of greater than 0.680 and less than or equal to 0.720 and a CIE 1931 chromaticity coordinate y of greater than or equal to 0.260 and less than or equal to 0.320. Light emitted from a second light-emitting element has a CIE 1931 chromaticity coordinate x of greater than or equal to 0.130 and less than or equal to 0.250 and a CIE 1931 chromaticity coordinate y of greater than 0.710 and less than or equal to 0.810. Light emitted from a third light-emitting element has a CIE 1931 chromaticity coordinate x of greater than or equal to 0.120 and less than or equal to 0.170 and a CIE 1931 chromaticity coordinate y of greater than or equal to 0.020 and less than 0.060.
Abstract:
Provided is a light-emitting device that can display an image with a wide color gamut or a novel light-emitting element. The light-emitting device includes a plurality of light-emitting elements each of which includes an EL layer between a pair of electrodes. Light obtained from a first light-emitting element through a first color filter has, on chromaticity coordinates (x, y), a chromaticity x of greater than 0.680 and less than or equal to 0.720 and a chromaticity y of greater than or equal to 0.260 and less than or equal to 0.320. Light obtained from a second light-emitting element through a second color filter has, on chromaticity coordinates (x, y), a chromaticity x of greater than or equal to 0.130 and less than or equal to 0.250 and a chromaticity y of greater than 0.710 and less than or equal to 0.810. Light obtained from a third light-emitting element through a third color filter has, on chromaticity coordinates (x, y), a chromaticity x of greater than or equal to 0.120 and less than or equal to 0.170 and a chromaticity y of greater than or equal to 0.020 and less than 0.060.
Abstract:
A novel light-emitting element is provided. A light-emitting element that emits red light with high color purity and has high emission efficiency is provided. A full-color light-emitting device having low power consumption is provided. In the light-emitting element that exhibits white light emission, the emission wavelength range of red light is a specific range on the longer wavelength side than the conventional emission wavelength range of red light that is usually used, and an optical element having a specific transmittance in the specific wavelength range is used.
Abstract:
A novel light-emitting element is provided. A light-emitting element that emits red light with high color purity and has high emission efficiency is provided. A full-color light-emitting device having low power consumption is provided. In the light-emitting element that exhibits white light emission, the emission wavelength range of red light is a specific range on the longer wavelength side than the conventional emission wavelength range of red light that is usually used, and an optical element having a specific transmittance in the specific wavelength range is used.
Abstract:
A tandem light-emitting element in which generation of crosstalk can be suppressed even when the element is applied to a high-definition display is provided. In the tandem light-emitting element, a layer in contact the anode side of an intermediate layer contains 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline (abbreviation: NBPhen).