Abstract:
Provided is a display system whose power consumption can be reduced. The display system includes an imaging device and a display device. The imaging device includes first pixels, a first circuit, and a second circuit. The first pixels are arranged in a matrix. The first circuit is configured to detect a difference between imaging data of a reference frame and imaging data of a difference detection frame. The second circuit is configured to detect a row of the first pixels where the difference is detected. The display device includes second pixels and a third circuit. The third circuit selects a row of the second pixels that corresponds to the row of the first pixels detected by the second circuit. Image data retained in the second pixels is rewritten only in the selected row.
Abstract:
An object is to provide a power feeding system and a power feeding method which are more convenient for a power feeding user at the power receiving end. An object is to provide a power feeding system and a power feeding method which also allow a power feeding provider (a company) which feeds power (at the power transmitting end) to supply power without waste. A power feeding device which wirelessly supplies power to a power receiver detects the position and the resonant frequency of the power receiver to be supplied with power, and controls the frequency of a power signal to be transmitted to the power receiver on the basis of the information. An efficient power feeding service can be offered by transmitting a power signal to the power receiver at an optimum frequency for high power transmission efficiency.
Abstract:
To provide a power feeding system and the like with which charging can be performed without a decrease in the power supply efficiency. To provide a power feeding system and the like with which can offer a power feeding service which is efficient to both a power feeding user and a power feeding provider. The power transmission state in each of power transmitting portions is monitored, the power transmitting portion having the highest power transmission efficiency is selected based on positional advantage, and the power transmitting resonance coil included in the selected power transmitting portion is kept at a first resonance frequency, whereby power transmission continues. The resonance frequency of the power transmitting resonance coil included in the non-selected power transmitting portion (the number of the non-selected power transmitting portions may be plural) is set to a second resonance frequency, whereby power transmission is stopped.
Abstract:
A circuit capable of keeping input impedance constant is provided. Further, a circuit which can contribute to improvement in power feeding efficiency in power feeding by a magnetic resonance method is provided. A voltage (a former voltage) proportional to a direct-current voltage input to a DC-DC converter from the outside and a voltage (a latter voltage) proportional to a current input from the outside are detected, and the ratio of the former voltage and the latter voltage are held constant. Accordingly, input impedance can be kept constant. Further, impedance conversion is performed in the DC-DC converter. Thus, even when the battery in which power feeding is performed exists on an output side of the DC-DC converter, input impedance can be kept constant. Consequently, power can be supplied to a power receiving device including the DC-DC converter and the battery with high power feeding efficiency by a magnetic resonance method.