Abstract:
A display panel includes a plurality of primary pixel units. Each primary pixel unit includes two primary pixels arranged horizontally. Each of the primary pixels comprises a plurality of subpixels arranged vertically and comprising different colors, and arrangements of the plurality of subpixels with different colors of the adjacent primary pixels being different. The result of the arrangement is neutralization of the adjacent primary pixels, and the neutral effect is “red with white tone.” So color shift caused by the overloaded data line is prevented, which effectively improves color shift occurring in the 3G1D LCD panel and enhances the display effect of the LCD panel.
Abstract:
A detecting circuit comprises a first to a third detecting line, a first and a second control line, and a first to a sixth transistor set. Each transistor set comprises a first and a second transistor, a control terminal thereof couples to the first and the second control line, respectively, a first terminal thereof couples to one of the first to the third detecting line, a second terminal thereof couples to the second terminal of the second transistor in the same transistor set. The connection nodes compose a dot set [(3,3), (2,2), (3,1), (2,3), (3,2), (2,1)], wherein the numerals 1-3 represent the first to the third detecting line, a first and a second numeral of a dot represent that a first terminal of the first and the second transistor connect to the detecting lines represented by the numerals, respectively.
Abstract:
The present invention provides a scan driving circuit and display panel. The scan driving circuit comprises a plurality of scan driving units, each of which comprises a fan-out line, a plurality of switch sets, a plurality of control lines and a plurality of scan lines. The control lines are connected to at least one of the switches of each of the switch sets individually and the fan-out line is connected to the scan lines through the switch sets, such that the scan lines are turned on separately under control of the fan-out line and the control lines. By the above mentioned solution, the present invention drives a plurality of scan lines by one fan-out line such that an amount of the gate driving chips in the fan-out block and the layout space of the fan-out line can be reduced.
Abstract:
A display panel is disclosed and includes an active area and a non-active area. A first, a second, a third, a fourth, a fifth, and a sixth charging scanning lines and a first, a second, a third, a fourth, a fifth, and a sixth charge-sharing scanning lines of an array unit on the active area are connected to a first, a second, a third, a fourth, a fifth, and a sixth pixel row, respectively. A first, a second, and a third detection lines on the non-active area are connected to the active area.
Abstract:
A displaying method of an LCD panel includes: dividing pixel units of the LCD panel into groups on row basis; realizing an allocation condition of colors of the sub-pixel units included in each row of the pixel units in each group, and specifying a number n of consecutive rows of pixel units having the same allocation condition of colors; defining n rows of the pixel units as a display unit and defining k display units, and sequentially inverting the display units when k is an even number to make the allocation conditions of colors are identical to the ones when k is an odd number; and presetting activation orders, and driving the pixel units in each group for charging, wherein each activation order corresponds to a charging timing of a sub-pixel for displaying a frame. Further with a driving device of an LCD panel and an LCD device, the problems of horizontal bright/dark lines of a frame of mixed colors occurring in the prior art can be solved.
Abstract:
A display panel includes a plurality of primary pixel units. Each primary pixel unit includes two primary pixels arranged horizontally. Each of the primary pixels comprises a plurality of subpixels arranged vertically and comprising different colors, and arrangements of the plurality of subpixels with different colors of the adjacent primary pixels being different. The result of the arrangement is neutralization of the adjacent primary pixels, and the neutral effect is “red with white tone.” So color shift caused by the overloaded data line is prevented, which effectively improves color shift occurring in the 3G1D LCD panel and enhances the display effect of the LCD panel.