Abstract:
A method of operating a gas sensing device is described. The method includes receiving a signal indicative of a value of resistance of a gas sensing element, processing the signal received to compute a value of a gas concentration, performing a comparison of the value of gas concentration to a threshold, and, based on the outcome of a diagnosis procedure, setting the device to an alert signal issue state as a function of the outcome of the comparison. The diagnosis procedure includes computing a set of parameters indicative of the state of the gas sensor circuit, and classifying the gas sensor circuit in one of a first, a second and a third class based on the parameters.
Abstract:
An earphone device has a casing having a measurement portion dedicated to acquisition of at least one measurement quantity with the earphone device arranged outside an ear of a subject. The earphone device is provided with at least one sensor, operatively coupled to the measurement portion within the casing for acquiring signals indicative of the measurement quantity, and a processing module that processes the signals acquired by the sensor so as to provide a processed output signal for monitoring the measurement quantity, as a function of the acquired signals. Electrical-connection elements define electrical paths within the casing in electrical connection with the sensor.
Abstract:
A device for monitoring the health state is made in a chip including a semiconductor die integrating an electric potential sensor and a cardiac parameter determination unit. The potential sensor is configured to detect potential variations on the body of a living being and associated with a heart rhythm and to generate a cardiac signal. The cardiac parameter determination unit is configured to receive the cardiac signal and determine cardiac parameters indicative of a health state. In particular, the cardiac parameter determination unit is configured to detect triggering events and to determine features of the cardiac signal in time windows defined by the triggering events. The die also integrates a decision unit, configured to receive the cardiac parameters and generate a health signal based on a comparison with threshold values. The cardiac parameters include heart rate and QRS-complex.
Abstract:
A detection device includes a pressure sensor, which provides a pressure signal indicative of an ambient pressure in an operating environment. An electrostatic-charge-variation sensor provides a charge-variation signal indicative of a variation of electrostatic charge associated with the operating environment, and processing circuitry is coupled to the pressure sensor and to the electrostatic-charge-variation sensor so as to receive the pressure signal and the charge-variation signal, and jointly processes the pressure signal and the charge-variation signal for detecting a variation between a first operating environment and a second operating environment for the detection device. The second operating environment is different from the first operating environment.
Abstract:
A method for presence detection in an environment to be monitored, includes generating an electric charge signal in a condition of absence of presence in the environment to be monitored. An electric charge signal is generated in an operating condition in which a person may be present in the environment. The two generated signals are processed and the results of the processing are compared. Processing the signals includes representing in a biaxial reference system the value of the charge signal considered and its derivative with respect to time, and identifying a plurality of points in the reference system. By comparing the position of the points acquired during the possible human presence with those of the base shape, a variation indicating the actual human presence may be detected. In this case an alarm signal is generated.
Abstract:
A system for detecting steps of a user includes processing circuitry and a sensor configured to detect a variation of electrostatic charge of the user during a step of the user and generate a charge-variation signal. An accelerometer is configured to detect an acceleration as a consequence of the step and generate an acceleration signal. The processing circuitry is configured to: acquire the charge-variation signal; acquire the acceleration signal; detect, in the charge-variation signal, a first characteristic identifying the step; detect, in the acceleration signal, a second characteristic identifying the step. If both of the first and second characteristics have been detected, the presence of the step can be validated.
Abstract:
A method includes sensing a level of ultraviolet radiation in an environment in which an electronic device is present, detecting an environmental condition of the electronic device based upon the sensed level of ultraviolet radiation, and controlling the operation of the electronic device based upon the detected environmental condition. The detected environmental condition may include an indoor condition, outdoor condition, near-window condition, near-door condition, and in-vehicle condition of the electronic device. Controlling the operation of the electronic device based upon the detected environmental condition may include selectively activating and deactivating components of the device based on the detected environmental condition to reduce power consumption of the device.