Abstract:
A capacitive discharge circuit includes a line having a capacitance, a switched capacitor circuit including a capacitor, a switched circuit coupled to the line, and a voltage regulator coupled between the switched capacitor circuit and the switched circuit. A controller operates the switched capacitor circuit and switched circuit to in a first phase, charge the capacitor by coupling the capacitor between a common mode and a power supply, and in a second phase, discharge the capacitor by coupling the voltage regulator in series with the capacitor between the power supply node a ground. The controller is also configured to in a third phase, charge the capacitor by coupling the capacitor between the common mode and the power supply, and in a fourth phase, share charge between the line and the capacitor by coupling the voltage regulator and the capacitor in series between the line and the ground.
Abstract:
An active stylus is capacitively coupled to a capacitive touch panel for communication. The active stylus operates in a wait mode to receive initial communications from the panel. In response to such receipt, the active stylus synchronizes to a repeating communications frame implementing time division multiplexing. Communications from the active stylus to the panel include: information communications; synchronization communications and communications specific for columns and/or rows of the panel. Communications from the panel to the active stylus may be addressed uniquely to the stylus or commonly to a group of styluses.
Abstract:
A capacitive discharge circuit includes a line having a capacitance, a switched capacitor circuit including a capacitor, a switched circuit coupled to the line, and a voltage regulator coupled between the switched capacitor circuit and the switched circuit. A controller operates the switched capacitor circuit and switched circuit to in a first phase, charge the capacitor by coupling the capacitor between a common mode and a power supply, and in a second phase, discharge the capacitor by coupling the voltage regulator in series with the capacitor between the power supply node a ground. The controller is also configured to in a third phase, charge the capacitor by coupling the capacitor between the common mode and the power supply, and in a fourth phase, share charge between the line and the capacitor by coupling the voltage regulator and the capacitor in series between the line and the ground.
Abstract:
An active stylus is capacitively coupled to a capacitive touch panel for communication. The active stylus operates in a wait mode to receive initial communications from the panel. In response to such receipt, the active stylus synchronizes to a repeating communications frame implementing time division multiplexing. Communications from the active stylus to the panel include: information communications; synchronization communications and communications specific for columns and/or rows of the panel. Communications from the panel to the active stylus may be addressed uniquely to the stylus or commonly to a group of styluses.
Abstract:
A touch panel includes capacitive sensing electrodes and a touch controller operates in a first operating mode to detect a touch location on the touch panel. In a second operating mode, the touch controller transmits a modulated data signal through the touch panel to an active stylus. Each electrode is driven by a line driver circuit. A control circuit selectively actuates first ones of the line driver circuits to pass the modulated data signal to corresponding first ones of the electrodes which do not pass through a region of the touch panel associated with the location of the detected touch. Simultaneously, the control circuit selectively actuates second ones of the line driver circuits, different from said first ones of the line driver circuits, to ground corresponding second ones of the electrodes which do pass through the region of the touch panel associated with the location of the detected touch.
Abstract:
Capacitance sensing circuits and methods are provided. A dual mode capacitance sensing circuit includes a capacitance-to-voltage converter having an amplifier and an integration capacitance coupled between an output and an inverting input of the amplifier, and a dual mode switching circuit responsive to mutual mode control signals for a controlling signal supplied from a capacitive touch matrix to the capacitance-to-voltage converter in a mutual capacitance sensing mode and responsive to self mode control signals for controlling signals supplied from the capacitive touch matrix to the capacitance-to-voltage converter in a self capacitance sensing mode, wherein the capacitance sensing circuit is configurable for operation in the mutual capacitance sensing mode or the self capacitance sensing mode.
Abstract:
Capacitance sensing circuits and methods are provided. A dual mode capacitance sensing circuit includes a capacitance-to-voltage converter having an amplifier and an integration capacitance coupled between an output and an inverting input of the amplifier, and a dual mode switching circuit responsive to mutual mode control signals for a controlling signal supplied from a capacitive touch matrix to the capacitance-to-voltage converter in a mutual capacitance sensing mode and responsive to self mode control signals for controlling signals supplied from the capacitive touch matrix to the capacitance-to-voltage converter in a self capacitance sensing mode, wherein the capacitance sensing circuit is configurable for operation in the mutual capacitance sensing mode or the self capacitance sensing mode.
Abstract:
A wireless power circuit operable in transceiver mode and in Q-factor measurement mode includes a bridge rectifier having first and second inputs coupled to first and second terminals of a coil, and an output coupled to a rectified node. An excitation circuit coupled to the first terminal, in Q-factor measurement mode, drives the coil with a pulsed signal. A protection circuit couples the first terminal to a first node when in Q-factor measurement mode and decouples the first terminal when in transceiver mode. A controller causes the bridge rectifier to short the first and second terminals to ground during Q-factor measurement mode. A sensing circuit amplifies voltage at the first node to produce an output voltage, and in response to the voltage at the first node rising to cross a rising threshold voltage, digitizes the output voltage. The digitized output voltage is used in calculating a Q-factor of the coil.
Abstract:
A system and method for synchronizing two devices in communication with each other. When communication between the two devices is to be established, a synchronization process may be invoked. In an embodiment, a first device may initiate sending synchronization signals having rising edge and falling edge pairs. The second device may include a controller configured to receive the synchronization signals. However, noise may inhibit the ability of the controller to correctly receive and/or interpret the synchronization signals. Noise may cause detection components to falsely detect noise as a synchronization signal or may cause detection components to miss detection of an actual synchronization signal. A window generator may be used to generate comparison windows for the controller to detect synchronization signals. Further, the detection window duration and start times may be adjusted based on previously detected (or undetected) synchronization signals in order to compensate for noise overshadowing synchronization signals.
Abstract:
A capacitive sensing system includes a capacitive sensing panel with drive lines and sense lines. Each drive line includes a drive circuit. A code generator operates to generate modulation codes. A drive controller generates drive signals wherein each drive signal is modulated by one of the modulation codes. The generated drive signals are applied to the drive lines through the drive circuits. The drive controller operates to simultaneously generate the drive signals for application to a corresponding group of drive lines during a drive period. Separate groups of drive lines are sequentially driven with the same drive signals during drive periods that only partially overlap.