DATA VOLUME SCULPTOR FOR DEEP LEARNING ACCELERATION

    公开(公告)号:US20210192833A1

    公开(公告)日:2021-06-24

    申请号:US17194055

    申请日:2021-03-05

    Abstract: A device include on-board memory, an applications processor, a digital signal processor (DSP) cluster, a configurable accelerator framework (CAF), and at least one communication bus architecture. The communication bus communicatively couples the applications processor, the DSP cluster, and the CAF to the on-board memory. The CAF includes a reconfigurable stream switch and data volume sculpting circuitry, which has an input and an output coupled to the reconfigurable stream switch. The data volume sculpting circuitry receives a series of frames, each frame formed as a two dimensional (2D) data structure, and determines a first dimension and a second dimension of each frame of the series of frames. Based on the first and second dimensions, the data volume sculpting circuitry determines for each frame a position and a size of a region-of-interest to be extracted from the respective frame, and extracts from each frame, data in the frame that is within the region-of-interest.

    ACCELERATION UNIT FOR A DEEP LEARNING ENGINE
    24.
    发明申请

    公开(公告)号:US20190266479A1

    公开(公告)日:2019-08-29

    申请号:US16280991

    申请日:2019-02-20

    Abstract: Embodiments of a device include an integrated circuit, a reconfigurable stream switch formed in the integrated circuit along with a plurality of convolution accelerators and an arithmetic unit coupled to the reconfigurable stream switch. The arithmetic unit has at least one input and at least one output. The at least one input is arranged to receive streaming data passed through the reconfigurable stream switch, and the at least one output is arranged to stream resultant data through the reconfigurable stream switch. The arithmetic unit also has a plurality of data paths. At least one of the plurality of data paths is solely dedicated to performance of operations that accelerate an activation function represented in the form of a piece-wise second order polynomial approximation.

Patent Agency Ranking