Pre-lithiation of multiple battery pouches

    公开(公告)号:US10439254B2

    公开(公告)日:2019-10-08

    申请号:US16248213

    申请日:2019-01-15

    Applicant: StoreDot Ltd.

    Abstract: Systems and methods are provided, in which the level of metal ions in cells stacks and lithium ion batteries is regulated in situ, with the electrodes of the cell stack(s) in the respective pouches. Regulation of metal ions may be carried out electrochemically by metal ion sources in the pouches, electrically connected to the electrodes. The position and shape of the metal ion sources may be optimized to create uniform metal ion movements to the electrode surfaces and favorable SEI formation. The metal ion sources may be removable, or comprise a lithium source for lithiating the anodes or cathodes during operation of the battery according to SoH parameters. Regulation of metal ions may be carried out from metal ion sources in separate electrolyte reservoir(s), with circulation of the metal-ion-containing electrolyte through the cell stacks in the pouches prior or during the formation.

    ANODE ACTIVE MATERIAL WITH A BUFFERING ZONE
    23.
    发明申请

    公开(公告)号:US20190393562A1

    公开(公告)日:2019-12-26

    申请号:US16533907

    申请日:2019-08-07

    Applicant: STOREDOT LTD.

    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.

    Introducing a mobile layer of ionic liquid into electrolytes of lithium ion batteries

    公开(公告)号:US10424814B2

    公开(公告)日:2019-09-24

    申请号:US16013969

    申请日:2018-06-21

    Applicant: StoreDot Ltd.

    Abstract: Electrolytes, anodes, lithium ion cells and methods are provided for preventing lithium metallization in lithium ion batteries to enhance their safety. Electrolytes comprise up to 20% ionic liquid additives which form a mobile solid electrolyte interface during charging of the cell and prevent lithium metallization and electrolyte decomposition on the anode while maintaining the lithium ion mobility at a level which enables fast charging of the batteries. Anodes are typically metalloid-based, for example include silicon, germanium, tin and/or aluminum. A surface layer on the anode bonds, at least some of the ionic liquid additive to form an immobilized layer that provides further protection at the interface between the anode and the electrolyte, prevents metallization of lithium on the former and decomposition of the latter.

    Lithium borates and phosphates coatings

    公开(公告)号:US10355271B2

    公开(公告)日:2019-07-16

    申请号:US15480922

    申请日:2017-04-06

    Applicant: STOREDOT LTD.

    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.

    Electrolytes with ionic liquid additives for lithium ion batteries

    公开(公告)号:US10096859B2

    公开(公告)日:2018-10-09

    申请号:US15447889

    申请日:2017-03-02

    Applicant: StoreDot Ltd.

    Abstract: Electrolytes, anodes, lithium ion cells and methods are provided for preventing lithium metallization in lithium ion batteries to enhance their safety. Electrolytes comprise up to 20% ionic liquid additives which form a mobile solid electrolyte interface during charging of the cell and prevent lithium metallization and electrolyte decomposition on the anode while maintaining the lithium ion mobility at a level which enables fast charging of the batteries. Anodes are typically metalloid-based, for example include silicon, germanium, tin and/or aluminum. A surface layer on the anode bonds, at least some of the ionic liquid additive to form an immobilized layer that provides further protection at the interface between the anode and the electrolyte, prevents metallization of lithium on the former and decomposition of the latter.

Patent Agency Ranking