Abstract:
Provided is an organic light-emitting display apparatus including a substrate; and a plurality of pixels on the substrate, wherein each of the pixels comprise: an organic light-emitting device comprising a first electrode, a second electrode, and an intermediate layer between the first electrode and the second electrode, wherein the intermediate layer comprises an organic emission layer; a driving transistor configured to drive the organic light-emitting device; and a switching transistor electrically coupled to the driving transistor, wherein the gate electrode of the driving transistor comprises a first conductive layer, and a second conductive layer between the first conductive layer and the active layer of the driving transistor and has a smaller size than the first conductive layer, and the gate electrode of the switching transistor comprises a same material as the first conductive layer.
Abstract:
An organic light-emitting display device and a method of its manufacture are provided, whereby manufacturing processes are simplified and display quality may be enhanced. The display device includes: an active layer of a thin film transistor (TFT), on a substrate and including a semiconducting material; a lower electrode of a capacitor, on the substrate, doped with ion impurities, and including a semiconducting material; a first insulating layer on the substrate to cover the active layer and the lower electrode; a gate electrode of the TFT, on the first insulating layer; a pixel electrode on the first insulating layer; an upper electrode of the capacitor, on the first insulating layer; source and drain electrodes of the TFT, electrically connected to the active layer; an organic layer on the pixel electrode and including an organic emission layer; and a counter electrode facing the pixel electrode, the organic layer between the counter electrode and the pixel electrode.
Abstract:
A display panel includes a signal line extending in a first direction and/or a second direction crossing the first direction, a first transistor electrically connected to the signal line, and including a first active pattern and a first gate electrode, and a first electrode electrically connected to the first transistor. A plurality of openings is defined in the signal line in way such that the signal line transmits an external light therethrough.
Abstract:
An organic light emitting display device having an electrostatic capacitive type touch panel function with reduced thickness and improved luminance. A display panel of the organic light emitting display device includes a substrate, a display unit having a plurality of pixels on the substrate, and a touch sensing unit on the display unit. The touch sensing unit includes an encapsulation substrate and a capacitive pattern layer on a side of the encapsulation substrate facing the display unit. The capacitive pattern layer has a plurality of openings corresponding in position to the plurality of pixels.
Abstract:
An organic light-emitting diode (OLED) display and a method of manufacturing the OLED display are disclosed. In one aspect, the OLED display includes a substrate including a display region and a peripheral region, a first auxiliary electrode formed in the peripheral region, and a protecting electrode. The protecting electrode can be formed in the display region and the peripheral region, wherein at least a portion of the protecting electrode can be formed above the first auxiliary electrode.
Abstract:
An organic light-emitting display apparatus for forming a frame by utilizing a plurality of subfields to display gradation. The organic light-emitting display apparatus includes a light-emitting pixel on a display area, a dummy pixel on a dummy area adjacent to the display area, and a repair line coupled to the dummy pixel. The light-emitting pixel is configured to emit light according to a logic level of a data signal applied during each of the subfields, and to adjust an emission time. The repair line is configured to couple the dummy pixel to a light-emitting element when the light-emitting element is separated from the light-emitting pixel, to provide a path to control a light emission of the light-emitting element according to a logic level of a dummy data signal applied to the dummy pixel.
Abstract:
An organic light-emitting display device and a method of its manufacture are provided, whereby manufacturing processes are simplified and display quality may be enhanced. The display device includes: an active layer of a thin film transistor (TFT), on a substrate and including a semiconducting material; a lower electrode of a capacitor, on the substrate, doped with ion impurities, and including a semiconducting material; a first insulating layer on the substrate to cover the active layer and the lower electrode; a gate electrode of the TFT, on the first insulating layer; a pixel electrode on the first insulating layer; an upper electrode of the capacitor, on the first insulating layer; source and drain electrodes of the TFT, electrically connected to the active layer; an organic layer on the pixel electrode and including an organic emission layer; and a counter electrode facing the pixel electrode, the organic layer between the counter electrode and the pixel electrode.