Abstract:
A display device includes: a substrate; a plurality of transistors disposed on the substrate; an initialization voltage line disposed on the substrate and including a first initialization voltage line that extends in a first direction, and a second initialization voltage line that extends in a second direction; and a driving voltage line disposed on the substrate and extending in the second direction, wherein each of the first initialization voltage line and the driving voltage line is connected to at least one of the plurality of transistors, and the second initialization voltage line and the driving voltage line overlap each other.
Abstract:
A display apparatus includes a display area extending in a first direction and a second direction, first to fourth sub-pixels, and a spacer. The first sub-pixel emits a first color light, and includes first and second sides extending in a third direction inclined at a predetermined angle with the first direction, and third and fourth sides extending in a fourth direction perpendicular to the third direction. The second sub-pixel emits a second color light, and is disposed adjacent to the second side of the first sub-pixel in the fourth direction. The third sub-pixel emits a third color light, and is disposed adjacent to the fourth side of the first sub-pixel in the third direction. The fourth sub-pixel emits the first color light, and is disposed adjacent to the second and third sub-pixels. The spacer is disposed between the first and second sub-pixels and between the third and fourth sub-pixels.
Abstract:
A display apparatus includes a plurality of pixels arranged in columns and rows in a display area, a data line extending in a first direction and connected with pixels of a k-th column (‘k’ is a natural number) and a (k+1)-th column, a gate line extending in a second direction crossing the first direction and connected with ones of the pixels, a gate signal line extending in the first direction and connected with the gate line, and a gate driver in a first peripheral area adjacent to a first longer side of the display area and having a first width, and configured to apply a gate signal to the gate line.
Abstract:
Provided is a liquid crystal display device including: a substrate; a first gate line; a first data line and a second data line to which data voltages with different polarities are applied; a first pixel electrode connected to the first gate line and the first data line; a liquid crystal layer formed on the first pixel electrode; and a first common electrode and a second common electrode disposed on the liquid crystal layer, in which the first pixel electrode includes a first subpixel electrode overlapping with the first common electrode and a second subpixel electrode overlapping with the second common electrode. A first voltage and A second voltage are alternatingly applied to the first common electrode and the second common electrode every two or more frames, respectively.
Abstract:
A liquid crystal display includes: a first substrate; a gate line disposed on the first substrate; a first data line and a second data line disposed on the first substrate; a first thin film transistor connected to the gate line and to the first data line; a first subpixel electrode connected to the first thin film transistor; a second thin film transistor connected to the gate line and to the second data line; a second subpixel electrode connected to the second thin film transistor; a third thin film transistor connected to the gate line and to the first data line; a fourth thin film transistor connected to the gate line and to the second data line; and a third subpixel electrode connected to the third and fourth thin film transistors.
Abstract:
In an exemplary display device of the present invention, a first microcavity filled with liquid crystal molecules is disposed on a substrate. A roof layer is disposed on an upper side and two facing first sides of the first microcavity. The two facing first sides are arranged in a first direction. A support member is disposed on one of two facing second sides of the first microcavity. The two facing second sides are arranged in a second direction crossing the first direction. An overcoat is disposed on the roof layer and the other of the two facing second sides of the first microcavity. The support member having a column shape is connected to the roof layer.
Abstract:
A display device is provided. A substrate includes a thin film transistor. A pixel electrode is connected to the thin film transistor. A common electrode is formed on the pixel electrode. A microcavity including liquid crystal molecules is interposed between the pixel electrode and the common electrode. A roof layer is formed on the common electrode. The roof layer includes at least one protrusion. A support member is formed under the at least one protrusion and in a column shape. The support member is surrounded by the liquid crystal molecules. An overcoat is formed on the roof layer and a side of the microcavity.
Abstract:
A display device may include a first subpixel electrode; a first roof layer; a first liquid crystal layer disposed between the first subpixel electrode and the first roof layer; and a first support member overlapping a first end portion of the first roof layer in a first direction. The display device may further include a second subpixel electrode immediately neighboring the first subpixel electrode; a second roof layer; a second liquid crystal layer disposed between the second subpixel electrode and the second roof layer; and a second support member overlapping a first end portion of the second roof layer in the first direction. The first end portion of the first roof layer and the first end portion of the second roof layer may be disposed between a second end portion of the first roof layer and a second end portion of the second roof layer.
Abstract:
A liquid crystal display includes: a first substrate; a gate line disposed on the first substrate; a first data line and a second data line disposed on the first substrate; a first thin film transistor connected to the gate line and to the first data line; a first subpixel electrode connected to the first thin film transistor; a second thin film transistor connected to the gate line and to the second data line; a second subpixel electrode connected to the second thin film transistor; a third thin film transistor connected to the gate line and to the first data line; a fourth thin film transistor connected to the gate line and to the second data line; and a third subpixel electrode connected to the third and fourth thin film transistors.
Abstract:
A display device may include a pixel circuit in a display area including a rounded corner portion, a scan driving circuit in a peripheral area surrounding the display area, and configured to provide a scan signal to the pixel circuit, a fan-out line between the pixel circuit and the scan driving circuit in the peripheral area adjacent to the corner portion, and configured to provide a pixel data signal to the pixel circuit, and a repair circuit between the scan driving circuit and the fan-out line in the peripheral area adjacent to the corner portion.