Abstract:
An organic light emitting display device has a plurality of first electrodes, intermediate layers, and second electrodes that correspond to a plurality of pixel areas. The first electrodes are spaced from one another, the second electrodes are spaced from one another, and the intermediate layers are spaced from one another. A conductive protection layer is formed over the second electrodes, and a connection electrode layer is formed over the conductive protection layer and electrically connecting the second electrodes.
Abstract:
A display apparatus includes an auxiliary wiring on a substrate, an insulating layer disposed on the auxiliary wiring and that includes a first opening that overlaps the auxiliary wiring and has a greater width than a width of the auxiliary wiring, a first electrode disposed on the insulating layer, a bank layer that includes an emission opening that overlaps the first electrode, an intermediate layer that overlaps the first electrode through the emission opening and that includes an emission layer, and a second electrode disposed on the intermediate layer, wherein the auxiliary wiring includes a plurality of sub-layers, and the second electrode contacts a side surface of any one of the plurality of sub-layers through the first opening of the insulating layer.
Abstract:
A display apparatus includes a substrate, a first electrode, a second electrode to be adjacent to the first electrode, a first emission layer on the first electrode, a second emission layer on the second electrode, a first low adhesive pattern between a center of the first emission layer and a center of the second emission layer in a plan view, a first negative charge generation layer continuously disposed to cover the first emission layer, the second emission layer, and the first low adhesive pattern, a first positive charge generation layer on the first negative charge generation layer, a first upper emission layer on the first positive charge generation layer and overlapping the first emission layer, a second upper emission layer on the first positive charge generation layer and overlapping the second emission layer, and a common electrode on the first upper emission layer and the second upper emission layer.
Abstract:
An apparatus for manufacturing a display device includes: a mask assembly, wherein the mask assembly includes: a mask frame including an open area; a first mask disposed on the mask frame, the first mask including at least one opening; a second mask disposed on the first mask, the second mask including a mesh portion having a mesh shape and a blocking member to shield a portion of the mesh portion; and a first support supporting a display substrate on the second mask and separating the display substrate from the second mask, wherein the blocking member overlaps the opening.
Abstract:
An organic light-emitting display apparatus including: a first electrode of a first group; a first organic functional layer covering the first electrode of the first group and including a first emission layer; a second electrode of the first group covering the first organic functional layer; a first electrode of a second group separate from the first electrode of the first group; a second organic functional layer separate from the first organic functional layer, covering the first electrode of the second group, having a larger area than the first organic functional layer, and including a second emission layer; a second electrode of the second group covering the second organic functional layer; and a common electrode integrally and commonly disposed on the second electrode of the first group and the second electrode of the second group.
Abstract:
Provided are a mask assembly, an apparatus for manufacturing a display apparatus, and a method of manufacturing the display apparatus. The mask assembly includes a mask comprising an opening having a pattern; and a self-assembled monolayer (SAM) that is coated on at least a portion of the mask.
Abstract:
Provided are a deposition apparatus and a method of manufacturing an organic light-emitting display (OLED) apparatus, which are capable of reducing manufacturing time and manufacturing costs of the OLED apparatus. The method includes: turning a substrate such that a deposition surface of the substrate faces upward; depositing a first deposition layer on a deposition surface of a first donor mask while the deposition surface of the first donor mask faces downward; arranging the first donor mask and the substrate such that the first donor mask is above the substrate while the first deposition layer faces downward and the deposition surface of the substrate faces upward; depositing, on the deposition surface of the substrate, a part of the first deposition layer of the deposition surface of the first donor mask; and turning the substrate such that the deposition surface of the substrate faces downward.
Abstract:
Provided are an electrostatic chuck system and a method of manufacturing an organic light-emitting display apparatus by using the electrostatic chuck system. The electrostatic chuck system comprises: a stage in which a first electrode and a second electrode are arranged, the first electrode having a first polarity and the second electrode having a second polarity that is different from the first polarity; a display substrate on the stage, the display substrate including a pixel electrode on a surface thereof; and an optical mask over the surface of the display substrate, the optical mask including a reflection layer and a transfer layer to be transferred to the display substrate, wherein the display substrate has one of the first and second polarities, and the optical mask has the other of the first and second polarities as the display substrate.
Abstract:
Provided are a mask assembly, an apparatus for manufacturing a display apparatus, and a method of manufacturing the display apparatus. The mask assembly includes a mask comprising an opening having a pattern; and a self-assembled monolayer (SAM) that is coated on at least a portion of the mask.
Abstract:
An organic light-emitting display device includes: a substrate; a pixel electrode on the substrate; a pixel defining layer having a first opening exposing a center portion of the pixel electrode; a barrier layer on the pixel defining layer; an intermediate layer including a first common layer, a first emissive layer, and a second common layer sequentially arranged on the pixel electrode, the pixel defining layer, and the barrier layer; and a first opposite electrode covering the intermediate layer. The barrier layer has a second opening that is larger than the first opening and has an undercut structure.