Abstract:
A control circuit for a frame memory includes a divider, a frame memory, a read control circuit, and a write control circuit. The divider divides image data into subfield data according to a plurality of subfields, where the image data is provided in synchronization with a first synchronization signal and in a unit of a frame. The frame memory has a plurality of blocks to store the subfield data. The read control circuit sequentially reads the subfield data from the blocks in synchronization with a second synchronization signal. The write control circuit writes new data to a first block before data written in a second block is read, and after data written in the first block is read by the read control circuit. The second synchronization signal may have a same cycle as the first synchronization signal and may be delayed by a preset delay time.
Abstract:
A pixel includes five transistors and a capacitor. A first transistor controls current to be supplied to a light-emitting element. A second transistor is connected between a gate electrode of the first transistor and a first power supply. A third transistor is connected between the gate electrode of the first transistor and a second terminal of the first transistor. The capacitor is coupled between the third transistor and the second terminal of the first transistor. The fourth transistor is connected between the second terminal of the first transistor and a second power supply. The fifth transistor is connected between the second terminal of the third transistor and a signal line. The capacitor may be the only capacitor in the pixel, and the signal line may receive an initialization voltage and a gray scale data voltage.
Abstract:
A pixel circuit includes a first transistor coupled to a light emitting element, a first capacitor coupled to the first transistor, a second transistor coupled to the first capacitor, a third transistor coupled between the second transistor and a data line; and a second capacitor having a first electrode coupled between the second and third transistors. The first transistor controls an amount of current supplied to the light emitting element based on a first data voltage while a second data voltage is stored in the second capacitor. The first data voltage is stored in the first capacitor.