Abstract:
Provided is an apparatus and method for detecting body parts, the method including identifying a group of sub-images relevant to a body part in an image to be detected, assigning a reliability coefficient for the body part to the sub-images in the group of sub-images based on a basic vision feature of the sub-images and an extension feature of the sub-images to neighboring regions, and detecting a location of the body part by overlaying sub-images having reliability coefficients higher than a threshold value.
Abstract:
A three-dimensional (3D) display device for displaying a 3D image using at least one of a gaze direction of a user and a gravity direction includes a gaze direction measuring unit to measure the gaze direction, a data obtaining unit to obtain 3D image data for the 3D image, a viewpoint information obtaining unit to obtain information relating to a viewpoint of the 3D image, a data transform unit to transform the 3D image data, based on the gaze direction and the information relating to the viewpoint of the 3D image, and a display unit to display the 3D image, based on the transformed 3D image data.
Abstract:
An apparatus and method for parsing a human body image may be implemented by acquiring a depth image including a human body, and detecting a plurality of points in the acquired depth image by conducting a minimum energy skeleton scan on the depth image.
Abstract:
A method of generating three-dimensional (3D) volumetric data may be performed by generating a multilayer image, generating volume information and a type of a visible part of an object, based on the generated multilayer image, and generating volume information and a type of an invisible part of the object, based on the generated multilayer image. The volume information and the type of each of the visible part and invisible part may be generated based on the generated multilayered image which may be include at least one of a ray-casting-based multilayer image, a chroma key screen-based multilayer image, and a primitive template-based multilayer image.
Abstract:
A neural network recognition method includes obtaining a first neural network that includes layers and a second neural network that includes a layer connected to the first neural network, actuating a processor to compute a first feature map from input data based on a layer of the first neural network, compute a second feature map from the input data based on the layer connected to the first neural network in the second neural network, and generate a recognition result based on the first neural network from an intermediate feature map computed by applying an element-wise operation to the first feature map and the second feature map.
Abstract:
A processor-implemented neural network processing method includes: obtaining a kernel bit-serial block corresponding to first data of a weight kernel of a layer in a neural network; generating a feature map bit-serial block based on second data of one or more input feature maps of the layer; and generating at least a portion of an output feature map by performing a convolution operation of the layer using a bitwise operation between the kernel bit-serial block and the feature map bit-serial block.
Abstract:
A convolutional neural network (CNN) processing method and apparatus. The apparatus may select, based on at least one of a characteristic of at least one kernel of a convolution layer or a characteristic of an input of the convolution layer, one operation mode from a first operation mode reusing a kernel, of the at least one kernel, and a second operation mode reusing the input, and perform a convolution operation based on the selected operation mode.
Abstract:
A method and apparatus with an adaptively updated enrollment database (DB) are provided. A method with an adaptively updated enrollment database (DB) includes extracting an input feature vector from an input image, determining whether the input feature vector is included in a changeable enrollment range, with the changeable enrollment range being determined based on a threshold distance from each of plural enrolled feature vectors in the enrollment DB, and with the enrolled feature vectors corresponding to enrolled images, determining whether to enroll the input feature vector in the enrollment DB in response to the input feature vector being determined as being included in the changeable enrollment range, and in response to a result of the determining of whether to enroll the input feature vector being to enroll the input feature vector, selectively enrolling the input feature vector in the enrollment DB.
Abstract:
Disclosed is a face verification method and apparatus. The method including analyzing a current frame of a verification image, determining a current frame state score of the verification image indicating whether the current frame is in a state predetermined as being appropriate for verification, determining whether the current frame state score satisfies a predetermined validity condition, and selectively, based on a result of the determining of whether the current frame state score satisfies the predetermined validity condition, extracting a feature from the current frame and performing verification by comparing a determined similarity between the extracted feature and a registered feature to a set verification threshold.
Abstract:
A processor-implemented method of generating feature data includes: receiving an input image; generating, based on a pixel value of the input image, at least one low-bit image having a number of bits per pixel lower than a number of bits per pixel of the input image; and generating, using at least one neural network, feature data corresponding to the input image from the at least one low-bit image.