Abstract:
A hardware-embedded security system is described. The system includes connective components, circuit elements and an insulator. The connective components include a variable conductivity layer that is conductive for a first stoichiometry and insulating for a second stoichiometry. The variable conductivity layer is conductive for a first portion of the connective components connected to a first portion of the circuit elements. The variable conductivity layer is insulating for a second portion of the connective components connected to a second portion of the circuit elements. Thus, the first portion of the circuit elements are active and the second portion of the circuit elements are inactive. The insulator is adjacent to at least a portion of each of the connective components. The first stoichiometry may be indistinguishable from the second stoichiometry via optical imaging and electron imaging of a portion of the insulator and the variable conductivity layer.
Abstract:
A method provides a source-drain stressor for a semiconductor device including source and drain regions. Recesses are formed in the source and drain regions. An insulating layer covers the source and drain regions. The recesses extend through the insulating layer above the source and drain regions. An intimate mixture layer of materials A and B is provided. Portions of the intimate mixture layer are in the recesses. The portions of the intimate mixture layer have a height and a width. The height divided by the width is greater than three. A top surface of the portions of the intimate mixture layer in the recesses is free. The intimate mixture layer is reacted to form a reacted intimate mixture layer including a compound AxBy. The compound AxBy occupies less volume than a corresponding portion of the intimate mixture layer.
Abstract:
Exemplary embodiments provide methods and systems for fabricating a metal source-drain stressor in a MOS device channel having improved tensile stress. Aspects of exemplary embodiment include forming a recess in source and drain areas; forming a metal contact layer on surfaces of the recess that achieves low contact resistivity; forming a metallic diffusion barrier over the metal contact layer; forming a layer M as an intimate mixture of materials A and B that substantially fills the recess; capping the layer M with a capping layer so that layer M is fully encapsulated and the capping layer prevents diffusion of A and B; and forming a compound AxBy within the layer M via a thermal reaction resulting in a reacted layer M comprising the metal source-drain stressor.