Abstract:
Disclosed herein are an X-ray imaging apparatus and a method for the same. The X-ray imaging apparatus includes a kernel function setter configured to set a scatter kernel function in response to a scatter component included in first X-ray image data detected by an X-ray detector, and an image data corrector configured to generate second X-ray image data obtained by performing scatter correction on the first X-ray image data using the scatter kernel function and data consistency. According to the X-ray imaging apparatus and the control method for the same, scatter correction is performed by using data consistency so that accuracy of the scatter correction may be increased and an X-ray image may be generated based on the accuracy, thereby improving quality of the X-ray image.
Abstract:
An X-ray imaging apparatus includes a back projected image generator configured to generate a back projected image with respect to a projected image of a field of view (FOV), and an image restorer configured to obtain frequency components of the back projected image, generate restored images for frequencies based on the frequency components of the back projected image, and generate a restored image with respect to the back projected image by synthesizing the restored images for the frequencies.
Abstract:
An X-ray imaging apparatus is provided. The X-ray imaging apparatus includes an overlapping unit configured to overlap a 2-Dimensional (2D) blood vessel image with a 2D fluoroscopy image to acquire a 2D roadmap image corresponding to a first position, a detector configured to detect a location of a surgical tool from the 2D roadmap image corresponding to the first position, and detect a blood vessel corresponding to the location of the surgical tool from a 3-Dimensional (3D) blood vessel image, and a User Interface (UI) processor configured to mark the 2D roadmap image with the location of the surgical tool with an identifier in the detected blood vessel.
Abstract:
An X-ray imaging apparatus is provided. The X-ray imaging apparatus includes an X-ray generator configured to radiate X-rays onto an object having a region of interest (ROI) and a non-ROI, a filter configured to adjust an X-ray dose of the X-rays incident on the ROI and the non-ROI, an X-ray detector configured to detect the X-rays transmitted through the object and convert the X-rays into X-ray data, and an image processing unit configured to obtain a frame image using the X-ray data, register the obtained frame image to a previous frame image, synthesize the frame image and the previous frame image, and generate a reconstructed frame image.
Abstract:
Disclosed herein is an X-ray imaging apparatus including: an X-ray generator including a first X-ray source configured to irradiate a first X-ray onto an object, and at least one second X-ray source spaced apart from the first X-ray source and configured to irradiate at least one second X-ray onto the object; an X-ray detector configured to detect the first X-ray which has propagated through the object and the at least one second X-ray which has propagated through the object; and an image processor configured to produce a first X-ray image of the object based on the detected first X-ray, to produce at least one second X-ray image of the object based on the detected at least one second X-ray, and to produce a stereoscopic image of the object based on the first X-ray image and the at least one second X-ray image.
Abstract:
Provided is a medical imaging apparatus including a scanner configured to acquire projection data of an object, a three dimensional (3D) recovery module configured to recover a volume of the object based on the projection data, a two dimensional (2D) image generator configured to generate a 2D image of the object based on the volume of the object, a 3D image generator configure to generate a 3D image of the object based on the volume of the object, a 2D display configured to display the 2D image of the object, and a 3D display configured to display the 3D image of the object.
Abstract:
An X-ray imaging method and apparatus are provided for forming an X-ray image having reduced noise and showing a clear boundary of a lesion region. The X-ray imaging method includes performing a first main shot which irradiates an object in a compressed state by using X-rays at least once to obtain a single two-dimensional image, performing a second main shot which irradiates the object by using X-rays at different positions to obtain a plurality of two-dimensional images, and forming a two-dimensional final image by removing a lesion region having a unclear boundary from each of the plurality of two-dimensional images and substituting a lesion region of the single two-dimensional image into an area which corresponds to the removed lesion region.