Abstract:
A short circuit detection method includes obtaining battery data associated with a state of a battery from a charging cycle of the battery, estimating an error in the battery data using an estimation model, determining a state indicator corresponding to the error in the battery data, and detecting a short circuit of the battery based on a result of comparing the state indicator and a short circuit threshold.
Abstract:
A battery charging control method and apparatus is disclosed. The battery charging control method includes inputting a preset magnitude of a current to a battery during a preset period of time, identifying a diffusion characteristic of a material in the battery, and determining whether to change the magnitude of the current to be input to the battery based on the identified diffusion characteristic of the material, in which the diffusion characteristic may be determined based on a distribution of the material in one or more of a cathode of the battery, an anode of the battery, and an electrolyte of the battery in response to the input of the current in the battery.
Abstract:
A battery charging method includes acquiring a functional relationship of a differential value of an amount of charge or a state of charge (SOC) with respect to a voltage of a battery based on the voltage or the SOC, determining charging steps for charging of the battery by analyzing the functional relationship, and generating a charging profile comprising charging currents for each of the charging steps to charge the battery.
Abstract:
A battery charging control method and apparatus is disclosed. The battery charging control method includes inputting a preset magnitude of a current to a battery during a preset period of time, identifying a diffusion characteristic of a material in the battery, and determining whether to change the magnitude of the current to be input to the battery based on the identified diffusion characteristic of the material, in which the diffusion characteristic may be determined based on a distribution of the material in one or more of a cathode of the battery, an anode of the battery, and an electrolyte of the battery in response to the input of the current in the battery.
Abstract:
A battery monitoring method includes identifying a state of charge (SOC) of a battery, obtaining a voltage of the battery with respect to the SOC, in response to the identified SOC being included in a diagnosis section, and determining a state of health (SOH) of the battery based on the obtained voltage of the battery.
Abstract:
A battery charging method includes: charging a battery with a charging current; and changing the charging current in response to a current change event occurring during the charging of the battery, wherein the current change event occurs when the battery reaches a threshold voltage at which an anode potential of the battery reaches a reference value.
Abstract:
A battery management apparatus for a battery including battery units, the apparatus including a voltage sensor configured to sense a voltage of each of the battery units; a phase difference calculator configured to calculate a phase difference between the voltage of each of the battery units and a reference voltage; and a temperature controller configured to control a temperature of each of the battery units based on the calculated phase difference.
Abstract:
Provided are a binder composition for an electrode for a capacitive deionization device including a first polymer including a first structural unit including a zwitterionic functional group and a second structural unit including a cross-linkable functional group, a cross-linking agent, and ionic functional group, an electrode for a capacitive deionization device including the composition, a capacitive deionization device including the electrode, and a method of removing ions from a fluid using the device.